Electrocatalytic NAD(P)H regeneration for biosynthesis

IF 9.1 Q1 ENGINEERING, CHEMICAL Green Chemical Engineering Pub Date : 2023-02-01 DOI:10.1016/j.gce.2023.02.001
Yaoxuan Li , Guanhua Liu , Weixi Kong , Suoqing Zhang , Yuemei Bao , Hao Zhao , Lihui Wang , Liya Zhou , Yanjun Jiang
{"title":"Electrocatalytic NAD(P)H regeneration for biosynthesis","authors":"Yaoxuan Li ,&nbsp;Guanhua Liu ,&nbsp;Weixi Kong ,&nbsp;Suoqing Zhang ,&nbsp;Yuemei Bao ,&nbsp;Hao Zhao ,&nbsp;Lihui Wang ,&nbsp;Liya Zhou ,&nbsp;Yanjun Jiang","doi":"10.1016/j.gce.2023.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>The highly efficient chemoselectivity, stereoselectivity, and regioselectivity render enzyme catalysis an ideal pathway for the synthesis of various chemicals in broad applications. While the cofactor of an enzyme is necessary but expensive, the conversed state of the cofactor is not beneficial for the positive direction of the reaction. Cofactor regeneration using electrochemical methods has the advantages of simple operation, low cost, easy process monitoring, and easy product separation, and the electrical energy is green and sustainable. Therefore, bioelectrocatalysis has great potential in synthesis by combining electrochemical cofactor regeneration with enzymatic catalysis. In this review, we detail the mechanism of cofactor regeneration and categorize the common electron mediators and enzymes used in cofactor regeneration. The reaction type and the recent progress are summarized in electrochemically coupled enzymatic catalysis. The main challenges of such electroenzymatic catalysis are pointed out and future developments in this field are foreseen.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666952823000055/pdfft?md5=ae391dc8b9665dab1e6e631775ff70c7&pid=1-s2.0-S2666952823000055-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666952823000055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The highly efficient chemoselectivity, stereoselectivity, and regioselectivity render enzyme catalysis an ideal pathway for the synthesis of various chemicals in broad applications. While the cofactor of an enzyme is necessary but expensive, the conversed state of the cofactor is not beneficial for the positive direction of the reaction. Cofactor regeneration using electrochemical methods has the advantages of simple operation, low cost, easy process monitoring, and easy product separation, and the electrical energy is green and sustainable. Therefore, bioelectrocatalysis has great potential in synthesis by combining electrochemical cofactor regeneration with enzymatic catalysis. In this review, we detail the mechanism of cofactor regeneration and categorize the common electron mediators and enzymes used in cofactor regeneration. The reaction type and the recent progress are summarized in electrochemically coupled enzymatic catalysis. The main challenges of such electroenzymatic catalysis are pointed out and future developments in this field are foreseen.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物合成的电催化NAD(P)H再生
酶催化具有高效的化学选择性、立体选择性和区域选择性,是合成各种化学物质的理想途径,应用广泛。虽然酶的辅助因子是必要的,但价格昂贵,而且辅助因子的转换状态不利于反应的正向进行。利用电化学方法进行辅助因子再生具有操作简单、成本低廉、过程易于监控、产物易于分离等优点,而且电能是绿色的、可持续的。因此,通过将电化学辅助因子再生与酶催化相结合,生物电催化在合成中具有很大的潜力。在这篇综述中,我们详细介绍了辅因子再生的机理,并对辅因子再生中常用的电子介质和酶进行了分类。并总结了电化学耦合酶催化的反应类型和最新进展。指出了此类电酶催化的主要挑战,并展望了该领域的未来发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Green Chemical Engineering
Green Chemical Engineering Process Chemistry and Technology, Catalysis, Filtration and Separation
CiteScore
11.60
自引率
0.00%
发文量
58
审稿时长
51 days
期刊最新文献
OFC: Outside Front Cover Outside Back Cover Outside Back Cover OFC: Outside Front Cover Integration of physical information and reaction mechanism data for surrogate prediction model and multi-objective optimization of glycolic acid production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1