CLUSTATIS: cluster analysis of blocks of variables

IF 0.6 Q4 STATISTICS & PROBABILITY Electronic Journal of Applied Statistical Analysis Pub Date : 2020-10-14 DOI:10.1285/I20705948V13N2P436
F. Llobell, E. Qannari
{"title":"CLUSTATIS: cluster analysis of blocks of variables","authors":"F. Llobell, E. Qannari","doi":"10.1285/I20705948V13N2P436","DOIUrl":null,"url":null,"abstract":"The STATIS method is one of many strategies of analysis devoted to the unsupervised analysis of multiblock data. A new optimization criterion to define this method of analysis is introduced and an extension to the cluster analysis of several blocks of variables is discussed. This consists in a hierarchical cluster analysis and a partitioning algorithm akin to the K-means algorithm. Moreover, in order to improve the cluster analysis outcomes, an additional cluster called noise cluster which contains atypical blocks of variables is introduced. The general strategy of analysis is illustrated by means of two cases studies.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"13 1","pages":"436-453"},"PeriodicalIF":0.6000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V13N2P436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The STATIS method is one of many strategies of analysis devoted to the unsupervised analysis of multiblock data. A new optimization criterion to define this method of analysis is introduced and an extension to the cluster analysis of several blocks of variables is discussed. This consists in a hierarchical cluster analysis and a partitioning algorithm akin to the K-means algorithm. Moreover, in order to improve the cluster analysis outcomes, an additional cluster called noise cluster which contains atypical blocks of variables is introduced. The general strategy of analysis is illustrated by means of two cases studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CLUSTATIS:对变量块进行聚类分析
STATIS方法是用于多块数据无监督分析的众多分析策略之一。引入了一种新的优化准则来定义这种分析方法,并讨论了对多块变量的聚类分析的推广。这包括一个分层聚类分析和一个类似于K-means算法的划分算法。此外,为了提高聚类分析的结果,引入了一个包含非典型变量块的额外聚类,称为噪声聚类。通过两个案例分析说明了分析的总体策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
期刊最新文献
Exploratory Data Analysis of Accuracy of US Weather Forecastes Extended asymmetry model based on logit transformation and decomposition of symmetry for square contingency tables with ordered categories Generalized Quasi Lindley Distribution: Theoretical Properties, Estimation Methods, and Applications Almost unbiased ridge estimator in the count data regression models Does the elimination of work flexibility contribute to reducing wage inequality? Empirical evidence from Ecuador
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1