{"title":"Fighting for Routes: Resource Allocation among Competing Planners in Transportation Networks","authors":"Charlotte Roman, P. Turrini","doi":"10.3390/g14030037","DOIUrl":null,"url":null,"abstract":"In transportation networks, incomplete information is ubiquitous, and users often delegate their route choice to distributed route planners. To model and study these systems, we introduce network control games, consisting of multiple actors seeking to optimise the social welfare of their assigned subpopulations through resource allocation in an underlying nonatomic congestion game. We first analyse the inefficiency of the routing equilibria by calculating the Price of Anarchy for polynomial cost functions, and then, using an Asynchronous Advantage Actor–Critic algorithm implementation, we show that reinforcement learning agents are vulnerable to choosing suboptimal routing as predicted by the theory. Finally, we extend the analysis to allow vehicles to choose their route planner and study the associated equilibria. Our results can be applied to mitigate inefficiency issues arising in large transport networks with route controlled autonomous vehicles.","PeriodicalId":35065,"journal":{"name":"Games","volume":"14 1","pages":"37"},"PeriodicalIF":0.6000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/g14030037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In transportation networks, incomplete information is ubiquitous, and users often delegate their route choice to distributed route planners. To model and study these systems, we introduce network control games, consisting of multiple actors seeking to optimise the social welfare of their assigned subpopulations through resource allocation in an underlying nonatomic congestion game. We first analyse the inefficiency of the routing equilibria by calculating the Price of Anarchy for polynomial cost functions, and then, using an Asynchronous Advantage Actor–Critic algorithm implementation, we show that reinforcement learning agents are vulnerable to choosing suboptimal routing as predicted by the theory. Finally, we extend the analysis to allow vehicles to choose their route planner and study the associated equilibria. Our results can be applied to mitigate inefficiency issues arising in large transport networks with route controlled autonomous vehicles.
GamesDecision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.60
自引率
11.10%
发文量
65
审稿时长
11 weeks
期刊介绍:
Games (ISSN 2073-4336) is an international, peer-reviewed, quick-refereeing open access journal (free for readers), which provides an advanced forum for studies related to strategic interaction, game theory and its applications, and decision making. The aim is to provide an interdisciplinary forum for all behavioral sciences and related fields, including economics, psychology, political science, mathematics, computer science, and biology (including animal behavior). To guarantee a rapid refereeing and editorial process, Games follows standard publication practices in the natural sciences.