Automated spinal MRI-based diagnostics of disc bulge and desiccating using LS-RBRP with RF

S. Shirly, R. Venkatesan, D. David, T. Jebaseeli
{"title":"Automated spinal MRI-based diagnostics of disc bulge and desiccating using LS-RBRP with RF","authors":"S. Shirly, R. Venkatesan, D. David, T. Jebaseeli","doi":"10.32629/jai.v6i2.938","DOIUrl":null,"url":null,"abstract":"Low back pain occurs because of the degeneration in Intervertebral Disc (IVD) namely: Disc Desiccation, Disc Bulge, and Disc Herniation, etc. To detect disc degeneration, a doctor often physically evaluates the Magnetic Resonance Imaging (MRI), which takes time and is dependent on the doctor’s expertise and training. Degeneration diagnosis that is automated can ease some of the doctor’s workload. On 378 IVDs for 63 patients, the proposed method is trained, tested, and assessed. According to the performance evaluation, the proposed Local Sub-Rhombus Binary Relationship (LS-RBRP) and Random Forrest (RF) classifier approach gives an overall accuracy of 90.2%. The proposed approach also produces a higher sensitivity, specificity, precision, and F-score of 80.8%, 90.3%, 90.4%, and 84.5%, respectively, when diagnosing the normal IVD, disc desiccation, and disc bulge in the lumbar MRI.","PeriodicalId":70721,"journal":{"name":"自主智能(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.32629/jai.v6i2.938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Low back pain occurs because of the degeneration in Intervertebral Disc (IVD) namely: Disc Desiccation, Disc Bulge, and Disc Herniation, etc. To detect disc degeneration, a doctor often physically evaluates the Magnetic Resonance Imaging (MRI), which takes time and is dependent on the doctor’s expertise and training. Degeneration diagnosis that is automated can ease some of the doctor’s workload. On 378 IVDs for 63 patients, the proposed method is trained, tested, and assessed. According to the performance evaluation, the proposed Local Sub-Rhombus Binary Relationship (LS-RBRP) and Random Forrest (RF) classifier approach gives an overall accuracy of 90.2%. The proposed approach also produces a higher sensitivity, specificity, precision, and F-score of 80.8%, 90.3%, 90.4%, and 84.5%, respectively, when diagnosing the normal IVD, disc desiccation, and disc bulge in the lumbar MRI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MRI的LS-RBRP射频椎间盘膨出和干燥的自动诊断
腰痛是由于椎间盘退变(IVD)引起的,即:椎间盘干燥、椎间盘突出和椎间盘突出等。为了检测椎间盘退变,医生通常会对磁共振成像(MRI)进行物理评估,这需要时间,并且取决于医生的专业知识和培训。退化诊断是自动化的,可以减轻医生的一些工作量。在63名患者的378个IVD上,对所提出的方法进行了培训、测试和评估。根据性能评估,所提出的局部亚朗布二元关系(LS-RBRP)和随机福雷斯特(RF)分类器方法的总体准确率为90.2%。在诊断正常IVD、椎间盘干燥、,腰椎MRI检查发现椎间盘突出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
25
期刊最新文献
Conditioning and monitoring of grinding wheels: A state-of-the-art review Design and implementation of secured file delivery protocol using enhanced elliptic curve cryptography for class I and class II transactions An improved fuzzy c-means-raindrop optimizer for brain magnetic resonance image segmentation Key management and access control based on combination of cipher text-policy attribute-based encryption with Proxy Re-Encryption for cloud data Novel scientific design of hybrid opposition based—Chaotic little golden-mantled flying fox, White-winged chough search optimization algorithm for real power loss reduction and voltage stability expansion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1