Enriched Oxygen for Crude Oil Preheating in Petroleum Refining

IF 0.9 Q4 THERMODYNAMICS International Journal of Thermodynamics Pub Date : 2021-05-26 DOI:10.5541/IJOT.880620
Y. Alqaheem, Abdulaziz A. Alomair
{"title":"Enriched Oxygen for Crude Oil Preheating in Petroleum Refining","authors":"Y. Alqaheem, Abdulaziz A. Alomair","doi":"10.5541/IJOT.880620","DOIUrl":null,"url":null,"abstract":"The crude distillation unit is one of the energy-intensive processes in the refinery. This is because of the crude preheater that suffers from excessive energy loss due to the use of air in the combustion furnace. Alternatively, fuel combustion by enriched oxygen can improve heat efficiency, minimize fuel consumption and reduce emissions. In this paper, enriched oxygen has been simulated by UniSim for preheating Kuwaiti crude in one of the distillation columns in the Clean Fuels Project. Results show that the use of 30 mol% of concentrated oxygen reduced fuel consumption by 5%. Carbon dioxide emissions were also minimized by 22,240 tons per year. A membrane system made from perfluoropolymer was simulated for the production of 5,298 tons of enriched oxygen (per day) and it required an area of 39,000 m 2 with a capital investment of 6.9 million $.","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5541/IJOT.880620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 1

Abstract

The crude distillation unit is one of the energy-intensive processes in the refinery. This is because of the crude preheater that suffers from excessive energy loss due to the use of air in the combustion furnace. Alternatively, fuel combustion by enriched oxygen can improve heat efficiency, minimize fuel consumption and reduce emissions. In this paper, enriched oxygen has been simulated by UniSim for preheating Kuwaiti crude in one of the distillation columns in the Clean Fuels Project. Results show that the use of 30 mol% of concentrated oxygen reduced fuel consumption by 5%. Carbon dioxide emissions were also minimized by 22,240 tons per year. A membrane system made from perfluoropolymer was simulated for the production of 5,298 tons of enriched oxygen (per day) and it required an area of 39,000 m 2 with a capital investment of 6.9 million $.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
富氧用于石油炼制中原油预热
原油蒸馏装置是炼油厂的能源密集型工艺之一。这是因为粗预热器由于在燃烧炉中使用空气而遭受过度的能量损失。或者,通过富氧燃烧燃料可以提高热效率,最大限度地减少燃料消耗并减少排放。本文用UniSim模拟了清洁燃料项目中一个蒸馏塔中的富氧预热科威特原油。结果表明,使用30mol%的浓氧可使燃料消耗减少5%。二氧化碳排放量也减少到每年22240吨。模拟了一个由全氟聚合物制成的膜系统,用于生产5298吨富氧(每天),该系统占地39000平方米,资本投资690万美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
35
期刊介绍: The purpose and scope of the International Journal of Thermodynamics is · to provide a forum for the publication of original theoretical and applied work in the field of thermodynamics as it relates to systems, states, processes, and both non-equilibrium and equilibrium phenomena at all temporal and spatial scales. · to provide a multidisciplinary and international platform for the dissemination to academia and industry of both scientific and engineering contributions, which touch upon a broad class of disciplines that are foundationally linked to thermodynamics and the methods and analyses derived there from. · to assess how both the first and particularly the second laws of thermodynamics touch upon these disciplines. · to highlight innovative & pioneer research in the field of thermodynamics in the following subjects (but not limited to the following, novel research in new areas are strongly suggested): o Entropy in thermodynamics and information theory. o Thermodynamics in process intensification. o Biothermodynamics (topics such as self-organization far from equilibrium etc.) o Thermodynamics of nonadditive systems. o Nonequilibrium thermal complex systems. o Sustainable design and thermodynamics. o Engineering thermodynamics. o Energy.
期刊最新文献
Computational Fluid Dynamic Analysis of Solar Dryer Equipped with Different Phase Change Materials Development and Economical Analysis of Innovative Parabolic Trough Collector Integrated Solar Still Use the Thermodynamic State Equations to Analyze the Non-ideality of Gas Mixtures Pressure Effect on Thermodynamic Quantities for the Solid-Liquid Phase Transition in n-tridecane, n-hexadecane and n-octadecane Effects of Nozzle Diameter and Holes Number on the Performance and Emissions of a Gasoline Direct Injection Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1