Review of Visualization Methods for Categorical Data in Cluster Analysis

IF 0.3 Q4 ECONOMICS Statistika-Statistics and Economy Journal Pub Date : 2022-12-16 DOI:10.54694/stat.2022.4
J. Cibulková, Barbora Kupková
{"title":"Review of Visualization Methods for Categorical Data in Cluster Analysis","authors":"J. Cibulková, Barbora Kupková","doi":"10.54694/stat.2022.4","DOIUrl":null,"url":null,"abstract":"The paper focuses on visualization methods suitable for outcomes of cluster analysis of categorical data (nominal data, specifically). Since nominal data have no inherent order, their graphical representation is often challenging or very limited. This paper aims to provide a list of common visualization methods in the domain of cluster analysis of objects characterized by nominal variables. Firstly, the various plot types (such as clustering scatter plot, dendrogram, icicle plot) for cluster analysis are presented, and their suitability for presenting clusters of nominal data is discussed. Then, we study approaches of sorting nominal values on chart axes in such a way that would improve visualization of the data. Lastly, we introduce a simple alternative to cluster scatter plot for nominal data, that makes the final visualization of clustering solution more efficient since the pattern and groups in data are now more apparent. The suggested method is demonstrated in illustrative examples.","PeriodicalId":43106,"journal":{"name":"Statistika-Statistics and Economy Journal","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistika-Statistics and Economy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54694/stat.2022.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

Abstract

The paper focuses on visualization methods suitable for outcomes of cluster analysis of categorical data (nominal data, specifically). Since nominal data have no inherent order, their graphical representation is often challenging or very limited. This paper aims to provide a list of common visualization methods in the domain of cluster analysis of objects characterized by nominal variables. Firstly, the various plot types (such as clustering scatter plot, dendrogram, icicle plot) for cluster analysis are presented, and their suitability for presenting clusters of nominal data is discussed. Then, we study approaches of sorting nominal values on chart axes in such a way that would improve visualization of the data. Lastly, we introduce a simple alternative to cluster scatter plot for nominal data, that makes the final visualization of clustering solution more efficient since the pattern and groups in data are now more apparent. The suggested method is demonstrated in illustrative examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚类分析中分类数据可视化方法综述
本文主要研究适合于分类数据(特别是标称数据)聚类分析结果的可视化方法。由于标称数据没有固有的顺序,它们的图形表示通常具有挑战性或非常有限。本文的目的是提供一个列表的常见可视化方法在聚类分析领域的对象表征的名义变量。首先,介绍了用于聚类分析的各种图类型(如聚类散点图、树状图、冰柱图),并讨论了它们对标称数据聚类的适用性。然后,我们研究了在图表轴上排序标称值的方法,这种方法可以提高数据的可视化。最后,我们为标称数据引入了一个简单的聚类散点图替代方案,这使得聚类解决方案的最终可视化更加有效,因为数据中的模式和组现在更加明显。通过实例对所提出的方法进行了论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
23
审稿时长
24 weeks
期刊最新文献
A Comparative Analysis of Business and Economics Researchers in the Visegrad Group of Countries, Austria and Romania Based on the Data Obtained from SciVal and Scopus The Relationship between Monetary Aggregates and Inflation – the Case of the Czech Republic The Czech Republic and Austrian Tourism in Scope of German Visitors The Impact of External Debt on Human Capital Development and GDP Growth in HIPCs: a Comprehensive Approach Evaluation of Digital Development Based on the International Digital Economy and Society Index 2020 Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1