The New Odd Log-Logistic Generalized Inverse Gaussian Regression Model

IF 1 Q3 STATISTICS & PROBABILITY Journal of Probability and Statistics Pub Date : 2019-01-10 DOI:10.1155/2019/8575424
Julio Cezar Souza Vasconcelos, G. Cordeiro, E. Ortega, E. G. Araújo
{"title":"The New Odd Log-Logistic Generalized Inverse Gaussian Regression Model","authors":"Julio Cezar Souza Vasconcelos, G. Cordeiro, E. Ortega, E. G. Araújo","doi":"10.1155/2019/8575424","DOIUrl":null,"url":null,"abstract":"We define a new four-parameter model called the odd log-logistic generalized inverse Gaussian distribution which extends the generalized inverse Gaussian and inverse Gaussian distributions. We obtain some structural properties of the new distribution. We construct an extended regression model based on this distribution with two systematic structures, which can provide more realistic fits to real data than other special regression models. We adopt the method of maximum likelihood to estimate the model parameters. In addition, various simulations are performed for different parameter settings and sample sizes to check the accuracy of the maximum likelihood estimators. We provide a diagnostics analysis based on case-deletion and quantile residuals. Finally, the potentiality of the new regression model to predict price of urban property is illustrated by means of real data.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/8575424","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/8575424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 11

Abstract

We define a new four-parameter model called the odd log-logistic generalized inverse Gaussian distribution which extends the generalized inverse Gaussian and inverse Gaussian distributions. We obtain some structural properties of the new distribution. We construct an extended regression model based on this distribution with two systematic structures, which can provide more realistic fits to real data than other special regression models. We adopt the method of maximum likelihood to estimate the model parameters. In addition, various simulations are performed for different parameter settings and sample sizes to check the accuracy of the maximum likelihood estimators. We provide a diagnostics analysis based on case-deletion and quantile residuals. Finally, the potentiality of the new regression model to predict price of urban property is illustrated by means of real data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的奇对数Logistic广义逆高斯回归模型
我们定义了一个新的四参数模型,称为奇对数逻辑广义逆高斯分布,它扩展了广义逆高斯和逆高斯分布。我们得到了新分布的一些结构性质。我们构建了一个基于这种分布的扩展回归模型,该模型具有两个系统结构,与其他特殊的回归模型相比,它可以提供更真实的真实数据拟合。我们采用最大似然法来估计模型参数。此外,针对不同的参数设置和样本大小进行各种模拟,以检查最大似然估计器的准确性。我们提供了基于病例删除和分位数残差的诊断分析。最后,通过实际数据说明了新回归模型预测城市房地产价格的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
期刊最新文献
Flexible Lévy-Based Models for Time Series of Count Data with Zero-Inflation, Overdispersion, and Heavy Tails Exponentially Generated Modified Chen Distribution with Applications to Lifetime Dataset Bayesian Estimation of the Stress-Strength Reliability Based on Generalized Order Statistics for Pareto Distribution Monitoring Changes in Clustering Solutions: A Review of Models and Applications Fitting Time Series Models to Fisheries Data to Ascertain Age
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1