Customer Prioritization Integrated Supply Chain Optimization Model with Outsourcing Strategies.

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Big Data Pub Date : 2024-12-01 Epub Date: 2022-04-29 DOI:10.1089/big.2021.0292
Iram Mushtaq, Muhammad Umer, Muhammad Attique Khan, Seifedine Kadry
{"title":"Customer Prioritization Integrated Supply Chain Optimization Model with Outsourcing Strategies.","authors":"Iram Mushtaq, Muhammad Umer, Muhammad Attique Khan, Seifedine Kadry","doi":"10.1089/big.2021.0292","DOIUrl":null,"url":null,"abstract":"<p><p>Pre-COVID-19, most of the supply chains functioned with more capacity than demand. However, COVID-19 changed traditional supply chains' dynamics, resulting in more demand than their production capacity. This article presents a multiobjective and multiperiod supply chain network design along with customer prioritization, keeping in view price discounts and outsourcing strategies to deal with the situation when demand exceeds the production capacity. Initially, a multiperiod, multiobjective supply chain network is designed that incorporates prices discounts, customer prioritization, and outsourcing strategies. The main objectives are profit and prioritization maximization and time minimization. The introduction of the prioritization objective function having customer ranking as a parameter and considering less capacity than demand and outsourcing differentiates this model from the literature. A four-valued neutrosophic multiobjective optimization method is introduced to solve the model developed. To validate the model, a case study of the supply chain of a surgical mask is presented as the real-life application of research. The research findings are useful for the managers to make price discounts and preferred customer prioritization decisions under uncertainty and imbalance between supply and demand. In future, the logic in the proposed model can be used to create web application for optimal decision-making in supply chains.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":"1 1","pages":"413-428"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2021.0292","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Pre-COVID-19, most of the supply chains functioned with more capacity than demand. However, COVID-19 changed traditional supply chains' dynamics, resulting in more demand than their production capacity. This article presents a multiobjective and multiperiod supply chain network design along with customer prioritization, keeping in view price discounts and outsourcing strategies to deal with the situation when demand exceeds the production capacity. Initially, a multiperiod, multiobjective supply chain network is designed that incorporates prices discounts, customer prioritization, and outsourcing strategies. The main objectives are profit and prioritization maximization and time minimization. The introduction of the prioritization objective function having customer ranking as a parameter and considering less capacity than demand and outsourcing differentiates this model from the literature. A four-valued neutrosophic multiobjective optimization method is introduced to solve the model developed. To validate the model, a case study of the supply chain of a surgical mask is presented as the real-life application of research. The research findings are useful for the managers to make price discounts and preferred customer prioritization decisions under uncertainty and imbalance between supply and demand. In future, the logic in the proposed model can be used to create web application for optimal decision-making in supply chains.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有外包策略的客户优先级集成供应链优化模型。
在2019冠状病毒病之前,大多数供应链的运转能力大于需求。然而,2019冠状病毒病改变了传统供应链的动态,导致需求大于产能。本文提出了一种多目标、多周期的供应链网络设计,考虑了客户优先级、价格折扣和外包策略,以应对需求超过生产能力的情况。首先,设计了一个包含价格折扣、客户优先级和外包策略的多周期、多目标供应链网络。主要目标是利润和优先级最大化和时间最小化。引入优先级目标函数,以客户排名为参数,考虑容量小于需求和外包,使该模型与文献不同。引入了一种四值嗜中性多目标优化方法来求解所建立的模型。为了验证该模型,本文提出了一个外科口罩供应链的案例研究,作为研究的实际应用。研究结果对在不确定性和供需不平衡的情况下进行价格折扣和顾客优先排序决策具有指导意义。在未来,该模型中的逻辑可以用于创建web应用程序,以实现供应链中的最优决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Data
Big Data COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍: Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions. Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government. Big Data coverage includes: Big data industry standards, New technologies being developed specifically for big data, Data acquisition, cleaning, distribution, and best practices, Data protection, privacy, and policy, Business interests from research to product, The changing role of business intelligence, Visualization and design principles of big data infrastructures, Physical interfaces and robotics, Social networking advantages for Facebook, Twitter, Amazon, Google, etc, Opportunities around big data and how companies can harness it to their advantage.
期刊最新文献
Research on Sports Injury Rehabilitation Detection Based on IoT Models for Digital Health Care. Prognostic Modeling for Liver Cirrhosis Mortality Prediction and Real-Time Health Monitoring from Electronic Health Data. IDLIQ: An Incremental Deterministic Finite Automaton Learning Algorithm Through Inverse Queries for Regular Grammar Inference. Social Listening for Product Design Requirement Analysis and Segmentation: A Graph Analysis Approach with User Comments Mining. Internet of Things Data Visualization for Business Intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1