Active Turbulence

IF 14.3 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Annual Review of Condensed Matter Physics Pub Date : 2021-04-05 DOI:10.1146/annurev-conmatphys-082321-035957
Ricard Alert, J. Casademunt, J. Joanny
{"title":"Active Turbulence","authors":"Ricard Alert, J. Casademunt, J. Joanny","doi":"10.1146/annurev-conmatphys-082321-035957","DOIUrl":null,"url":null,"abstract":"Active fluids exhibit spontaneous flows with complex spatiotemporal structure, which have been observed in bacterial suspensions, sperm cells, cytoskeletal suspensions, self-propelled colloids, and cell tissues. Despite occurring in the absence of inertia, chaotic active flows are reminiscent of inertial turbulence, and hence they are known as active turbulence. Here, we survey the field, providing a unified perspective over different classes of active turbulence. To this end, we divide our review in sections for systems with either polar or nematic order, and with or without momentum conservation (wet or dry). Comparing to inertial turbulence, we highlight the emergence of power-law scaling with either universal or nonuniversal exponents. We also contrast scenarios for the transition from steady to chaotic flows, and we discuss the absence of energy cascades. We link this feature to both the existence of intrinsic length scales and the self-organized nature of energy injection in active turbulence, which are fundamental differences with inertial turbulence. We close by outlining the emerging picture, remaining challenges, and future directions. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"1 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-082321-035957","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 109

Abstract

Active fluids exhibit spontaneous flows with complex spatiotemporal structure, which have been observed in bacterial suspensions, sperm cells, cytoskeletal suspensions, self-propelled colloids, and cell tissues. Despite occurring in the absence of inertia, chaotic active flows are reminiscent of inertial turbulence, and hence they are known as active turbulence. Here, we survey the field, providing a unified perspective over different classes of active turbulence. To this end, we divide our review in sections for systems with either polar or nematic order, and with or without momentum conservation (wet or dry). Comparing to inertial turbulence, we highlight the emergence of power-law scaling with either universal or nonuniversal exponents. We also contrast scenarios for the transition from steady to chaotic flows, and we discuss the absence of energy cascades. We link this feature to both the existence of intrinsic length scales and the self-organized nature of energy injection in active turbulence, which are fundamental differences with inertial turbulence. We close by outlining the emerging picture, remaining challenges, and future directions. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
活跃的动荡
活性流体表现出具有复杂时空结构的自发流动,已在细菌悬浮液、精子细胞、细胞骨架悬浮液、自推进胶体和细胞组织中观察到。尽管在没有惯性的情况下发生,但混沌活动流让人想起惯性湍流,因此被称为活动湍流。在这里,我们调查了该领域,为不同类别的活跃湍流提供了一个统一的视角。为此,我们将我们的综述分为具有极性或向列有序以及具有或不具有动量守恒(湿态或干态)的系统的部分。与惯性湍流相比,我们强调了幂律标度的出现,它具有普遍指数或非普遍指数。我们还对比了从稳定流到混沌流的过渡场景,并讨论了能量级联的缺失。我们将这一特征与固有长度尺度的存在和主动湍流中能量注入的自组织性质联系起来,这是与惯性湍流的根本区别。最后,我们概述了新出现的情况、剩余的挑战和未来的方向。《凝聚态物理学年度评论》第13卷预计最终在线出版日期为2022年3月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Condensed Matter Physics
Annual Review of Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
47.40
自引率
0.90%
发文量
27
期刊介绍: Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.
期刊最新文献
Machine Learning for Climate Physics and Simulations From Fluctuations and Disorder to Scaling and Control: The Emergence of Resistance in Microbial Communities Activity Unmasks Chirality in Liquid-Crystalline Matter High-Order Van Hove Singularities and Their Connection to Flat Bands Emergent Simplicities in the Living Histories of Individual Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1