Bin Yang, W. Xue, Tianyu Zhang, Shichao Liu, Xiaosong Ma, Xiyang Wang, Weiguo Liu
{"title":"End-to-end I/O Monitoring on Leading Supercomputers","authors":"Bin Yang, W. Xue, Tianyu Zhang, Shichao Liu, Xiaosong Ma, Xiyang Wang, Weiguo Liu","doi":"10.1145/3568425","DOIUrl":null,"url":null,"abstract":"This paper offers a solution to overcome the complexities of production system I/O performance monitoring. We present Beacon, an end-to-end I/O resource monitoring and diagnosis system for the 40960-node Sunway TaihuLight supercomputer, currently the fourth-ranked supercomputer in the world. Beacon simultaneously collects and correlates I/O tracing/profiling data from all the compute nodes, forwarding nodes, storage nodes, and metadata servers. With mechanisms such as aggressive online and offline trace compression and distributed caching/storage, it delivers scalable, low-overhead, and sustainable I/O diagnosis under production use. With Beacon’s deployment on TaihuLight for more than three years, we demonstrate Beacon’s effectiveness with real-world use cases for I/O performance issue identification and diagnosis. It has already successfully helped center administrators identify obscure design or configuration flaws, system anomaly occurrences, I/O performance interference, and resource under- or over-provisioning problems. Several of the exposed problems have already been fixed, with others being currently addressed. Encouraged by Beacon’s success in I/O monitoring, we extend it to monitor interconnection networks, which is another contention point on supercomputers. In addition, we demonstrate Beacon’s generality by extending it to other supercomputers. Both Beacon codes and part of collected monitoring data are released.1","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"19 1","pages":"1 - 35"},"PeriodicalIF":2.1000,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3568425","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 41
Abstract
This paper offers a solution to overcome the complexities of production system I/O performance monitoring. We present Beacon, an end-to-end I/O resource monitoring and diagnosis system for the 40960-node Sunway TaihuLight supercomputer, currently the fourth-ranked supercomputer in the world. Beacon simultaneously collects and correlates I/O tracing/profiling data from all the compute nodes, forwarding nodes, storage nodes, and metadata servers. With mechanisms such as aggressive online and offline trace compression and distributed caching/storage, it delivers scalable, low-overhead, and sustainable I/O diagnosis under production use. With Beacon’s deployment on TaihuLight for more than three years, we demonstrate Beacon’s effectiveness with real-world use cases for I/O performance issue identification and diagnosis. It has already successfully helped center administrators identify obscure design or configuration flaws, system anomaly occurrences, I/O performance interference, and resource under- or over-provisioning problems. Several of the exposed problems have already been fixed, with others being currently addressed. Encouraged by Beacon’s success in I/O monitoring, we extend it to monitor interconnection networks, which is another contention point on supercomputers. In addition, we demonstrate Beacon’s generality by extending it to other supercomputers. Both Beacon codes and part of collected monitoring data are released.1
期刊介绍:
The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.