{"title":"Rubber effect on metallic dampers used on the supports of steel cross members","authors":"F. S. Balik, Fatih Bahadir","doi":"10.1002/tal.2044","DOIUrl":null,"url":null,"abstract":"There are many strengthening methods made with steel cross members for strengthening the structures with inadequate earthquake behavior. This type of strengthening methods is also effective in buckling of the cross members in the behavior of the structural frames. This buckling may cause partial or complete collapse of the structure. Thus, it is quite important to prevent and limit the formation of buckling in steel crosses. At the TEC 2018, the insulation unit is defined as the elements that can exhibit flexible behavior on the horizontal direction and rigid behavior on the vertical direction under the effect of earthquake loads. The basic principle of using insulation units is that these members can dissipate energy in the carrier system. The originality of this study is to experimentally investigate the damper behavior created by using cylindrical rubber wedges, which can be easily found in the automotive industry, in combination with steel plates and bolts. In this experimental study, the contribution of seismic insulators to the structural element to be strengthened was investigated. The insulators used in this study are considered by analogy with lead‐core rubber insulators. As such seismic lead‐core rubber insulators move under the influence of lateral loads, the lead core inside makes plastic deformation, thus increasing the damping rate. In this insulator study, it is aimed to use U plates or bolts instead of lead core. While vertical loads are covered by rubber support, horizontal loads will be damped due to plastic deformation of U plates or bolts. The five types of seismic dampers were used as 10 B‐type rubber wedge mounted damper (SR), 2 U‐type steel plates damper (SP), 10 M6 steel bolted damper (SB), 2 U‐type steel plates and 10 B‐type rubber wedge mounted damper (SPR), 10 M6 steel bolted, and 10 C‐type rubber wedge mounted damper (SBR). These specimens were tested under lateral loading and constant vertical loading. The results obtained at the end of the tests shall be compared considering the strength, stiffness, and dissipated energy capacities of the specimens.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.2044","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There are many strengthening methods made with steel cross members for strengthening the structures with inadequate earthquake behavior. This type of strengthening methods is also effective in buckling of the cross members in the behavior of the structural frames. This buckling may cause partial or complete collapse of the structure. Thus, it is quite important to prevent and limit the formation of buckling in steel crosses. At the TEC 2018, the insulation unit is defined as the elements that can exhibit flexible behavior on the horizontal direction and rigid behavior on the vertical direction under the effect of earthquake loads. The basic principle of using insulation units is that these members can dissipate energy in the carrier system. The originality of this study is to experimentally investigate the damper behavior created by using cylindrical rubber wedges, which can be easily found in the automotive industry, in combination with steel plates and bolts. In this experimental study, the contribution of seismic insulators to the structural element to be strengthened was investigated. The insulators used in this study are considered by analogy with lead‐core rubber insulators. As such seismic lead‐core rubber insulators move under the influence of lateral loads, the lead core inside makes plastic deformation, thus increasing the damping rate. In this insulator study, it is aimed to use U plates or bolts instead of lead core. While vertical loads are covered by rubber support, horizontal loads will be damped due to plastic deformation of U plates or bolts. The five types of seismic dampers were used as 10 B‐type rubber wedge mounted damper (SR), 2 U‐type steel plates damper (SP), 10 M6 steel bolted damper (SB), 2 U‐type steel plates and 10 B‐type rubber wedge mounted damper (SPR), 10 M6 steel bolted, and 10 C‐type rubber wedge mounted damper (SBR). These specimens were tested under lateral loading and constant vertical loading. The results obtained at the end of the tests shall be compared considering the strength, stiffness, and dissipated energy capacities of the specimens.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.