Improving the flexural behavior of RC beams strengthening by near-surface mounting

IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of the Mechanical Behavior of Materials Pub Date : 2022-01-01 DOI:10.1515/jmbm-2022-0070
Hadeel S. AL-Ameedee, Hayder M. Al-Khafaji
{"title":"Improving the flexural behavior of RC beams strengthening by near-surface mounting","authors":"Hadeel S. AL-Ameedee, Hayder M. Al-Khafaji","doi":"10.1515/jmbm-2022-0070","DOIUrl":null,"url":null,"abstract":"Abstract This article presents the experimental investigations undertaken to evaluate the strengthening and enhancement characteristics of near-surface mounted (NSM) devices using different types of bars. A total of 4 concrete beams (150 mm × 300 mm × 1,500 mm) were reinforced in flexure. Three beams strengthened with different embedments of NSM (carbon fiber-reinforced polymer [CFRP], Glass fiber-reinforced polymer [GFRP], and steel) bars, and one unstrengthened beam used as a control beam were tested under monotonic static loading to determine the enhancing influence of the fiber-reinforced polymer (FRP) reinforcement. The performance of different bars used to establish the concrete is examined. A general methodology to evaluate the improving flexural behavior of RC beams strengthened with NSM–FRP bars is presented. A quantitative criterion governing debonding failure is established. The proposed bond model assumes linear elastic behavior for the concrete, adhesive, and NSM–FRP bars, following the same philosophy as the American concrete institute [ACI] provisions for bond analysis and design to control the cracks. So FRP reinforcements show substantial deformation before failure when the cross-sectional area is based on a permissible strain during service, so there is no need to check the deformability. The results of the tests show that using NSM–CFRP bars improves the flexural capacity and stiffness of the strengthened concrete beams of other types.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":"31 1","pages":"701 - 709"},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This article presents the experimental investigations undertaken to evaluate the strengthening and enhancement characteristics of near-surface mounted (NSM) devices using different types of bars. A total of 4 concrete beams (150 mm × 300 mm × 1,500 mm) were reinforced in flexure. Three beams strengthened with different embedments of NSM (carbon fiber-reinforced polymer [CFRP], Glass fiber-reinforced polymer [GFRP], and steel) bars, and one unstrengthened beam used as a control beam were tested under monotonic static loading to determine the enhancing influence of the fiber-reinforced polymer (FRP) reinforcement. The performance of different bars used to establish the concrete is examined. A general methodology to evaluate the improving flexural behavior of RC beams strengthened with NSM–FRP bars is presented. A quantitative criterion governing debonding failure is established. The proposed bond model assumes linear elastic behavior for the concrete, adhesive, and NSM–FRP bars, following the same philosophy as the American concrete institute [ACI] provisions for bond analysis and design to control the cracks. So FRP reinforcements show substantial deformation before failure when the cross-sectional area is based on a permissible strain during service, so there is no need to check the deformability. The results of the tests show that using NSM–CFRP bars improves the flexural capacity and stiffness of the strengthened concrete beams of other types.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近表面安装法改善钢筋混凝土梁的受弯性能
摘要本文介绍了为评估使用不同类型棒材的近表面安装(NSM)装置的强化和增强特性而进行的实验研究。共4根混凝土梁(150 毫米×300 毫米×1500 mm)弯曲增强。在单调静载荷下测试了三根采用不同嵌入NSM(碳纤维增强聚合物[CCFRP]、玻璃纤维增强聚合物[GFRP]和钢)钢筋加固的梁,以及一根用作控制梁的未加固梁,以确定纤维增强聚合物(FRP)钢筋的增强影响。检验了用于配制混凝土的不同钢筋的性能。提出了一种评估NSM–FRP筋加固RC梁抗弯性能改善的通用方法。建立了脱粘失效的定量判据。所提出的粘结模型假设混凝土、粘合剂和NSM–FRP筋的线性弹性行为,遵循与美国混凝土协会[ACI]关于粘结分析和设计以控制裂缝的规定相同的原理。因此,当横截面积基于使用过程中的容许应变时,FRP钢筋在失效前表现出显著变形,因此无需检查变形能力。试验结果表明,使用NSM–CFRP钢筋可以提高其他类型加固混凝土梁的抗弯承载力和刚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Mechanical Behavior of Materials
Journal of the Mechanical Behavior of Materials Materials Science-Materials Science (miscellaneous)
CiteScore
3.00
自引率
11.10%
发文量
76
审稿时长
30 weeks
期刊介绍: The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.
期刊最新文献
Evaluation of the mechanical and dynamic properties of scrimber wood produced from date palm fronds Performance of doubly reinforced concrete beams with GFRP bars Blood flow analysis in narrow channel with activation energy and nonlinear thermal radiation Alteration of physicochemical properties of tap water passing through different intensities of magnetic field The peristaltic flow for Carreau fluid through an elastic channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1