Silesiaite, ideally Ca2Fe3+Sn(Si2O7)(Si2O6OH), a new species in the kristiansenite group: crystal chemistry and structure of holotype silesiaite from Szklarska Poręba, Poland, and Sc-free silesiaite from Häiviäntien, Finland
A. Pieczka, S. Zelek-Pogudz, B. Gołębiowska, K. Stadnicka, R. Kristiansen
{"title":"Silesiaite, ideally Ca2Fe3+Sn(Si2O7)(Si2O6OH), a new species in the kristiansenite group: crystal chemistry and structure of holotype silesiaite from Szklarska Poręba, Poland, and Sc-free silesiaite from Häiviäntien, Finland","authors":"A. Pieczka, S. Zelek-Pogudz, B. Gołębiowska, K. Stadnicka, R. Kristiansen","doi":"10.1180/mgm.2023.5","DOIUrl":null,"url":null,"abstract":"Abstract Two silesiaite crystals, one from Szklarska Poręba, Poland (type locality), and the other from Häiviäntien, Finland, were studied with electron-probe microanalysis, Raman spectroscopy and single-crystal X-ray diffraction. The crystals have the following compositions normalised to 13 O2– + 1 (OH)– anions: Ca2.001(2)[(Sn1.105(6)Zr0.009(1))Σ1.114(Fe3+0.523(78)Sc0.185(62)Al0.070(14))Σ0.779(Fe2+0.065(12)Mn2+0.041(5)Mg0.003(3))Σ0.110]Σ2.003(Si3.997(2)O13OH), and Ca2.006(8)[(Sn1.110(18)Ti0.006(3))Σ1.107(Fe3+0.648(50)Al0.063(11))Σ0.710(Fe2+0.140(30)Mn2+0.011(3)Mg0.005(2))Σ0.155(Nb0.020(6)Ta0.011(3))Σ0.040]Σ2.009(Si3.991(14)O13OH), respectively. The structure of the crystals was refined in the triclinic system with unconventional space-group symmetry C1 to R1 = 2.02% and 3.56%, respectively. The unit cells were found to be a = 10.0080(2), b = 8.3622(1), c = 13.2994(2) Å, α = 89.987(1), β = 109.095(2), γ = 89.978(1)° and V = 1051.77(3) Å3 for silesiaite from Szklarska Poręba, and a = 9.9985(3), b = 8.3446(2), c = 13.2760(4) Å, α = 89.986(3), β = 109.122(2), γ = 90.020(2)° and V = 1046.55(5) Å3 for silesiaite from Häiviäntien. In both crystals, the Ca sites are occupied solely by calcium and Si sites by silicon atoms. Optimised occupancies of the four M sites indicated slightly different site fillings. In the Szklarska Poręba silesiaite, the M1 site is predominantly occupied by trivalent Fe + Sc and the M2–M4 sites by Sn. In contrast, in the Häiviäntien silesiaite, the M1–M3 sites are Sn-dominant, while Fe3+ predominantly occupies the M4 site. The differences can be considered a result of an evolution of the M1–M4 site occupancies following a decrease of the distance. Among the minerals of the kristiansenite group, Sc-free silesiaite from the Häiviäntien pegmatite has the smallest average radius of M-site cations and a unit-cell volume that increases proportionally to the (Fe2+ ± Sc) content. The hydrogen atoms form moderate hydrogen bonds between disilicate groups (Si2O7 and Si2O6OH) linked in rows along [101], indicating the presence of one hydroxyl in the formula calculated for Z = 4. All three kristiansenite-group species, i.e. silesiaite, kozłowskiite and kristiansenite, are isostructural.","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":"87 1","pages":"271 - 283"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralogical Magazine","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1180/mgm.2023.5","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MINERALOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Two silesiaite crystals, one from Szklarska Poręba, Poland (type locality), and the other from Häiviäntien, Finland, were studied with electron-probe microanalysis, Raman spectroscopy and single-crystal X-ray diffraction. The crystals have the following compositions normalised to 13 O2– + 1 (OH)– anions: Ca2.001(2)[(Sn1.105(6)Zr0.009(1))Σ1.114(Fe3+0.523(78)Sc0.185(62)Al0.070(14))Σ0.779(Fe2+0.065(12)Mn2+0.041(5)Mg0.003(3))Σ0.110]Σ2.003(Si3.997(2)O13OH), and Ca2.006(8)[(Sn1.110(18)Ti0.006(3))Σ1.107(Fe3+0.648(50)Al0.063(11))Σ0.710(Fe2+0.140(30)Mn2+0.011(3)Mg0.005(2))Σ0.155(Nb0.020(6)Ta0.011(3))Σ0.040]Σ2.009(Si3.991(14)O13OH), respectively. The structure of the crystals was refined in the triclinic system with unconventional space-group symmetry C1 to R1 = 2.02% and 3.56%, respectively. The unit cells were found to be a = 10.0080(2), b = 8.3622(1), c = 13.2994(2) Å, α = 89.987(1), β = 109.095(2), γ = 89.978(1)° and V = 1051.77(3) Å3 for silesiaite from Szklarska Poręba, and a = 9.9985(3), b = 8.3446(2), c = 13.2760(4) Å, α = 89.986(3), β = 109.122(2), γ = 90.020(2)° and V = 1046.55(5) Å3 for silesiaite from Häiviäntien. In both crystals, the Ca sites are occupied solely by calcium and Si sites by silicon atoms. Optimised occupancies of the four M sites indicated slightly different site fillings. In the Szklarska Poręba silesiaite, the M1 site is predominantly occupied by trivalent Fe + Sc and the M2–M4 sites by Sn. In contrast, in the Häiviäntien silesiaite, the M1–M3 sites are Sn-dominant, while Fe3+ predominantly occupies the M4 site. The differences can be considered a result of an evolution of the M1–M4 site occupancies following a decrease of the distance. Among the minerals of the kristiansenite group, Sc-free silesiaite from the Häiviäntien pegmatite has the smallest average radius of M-site cations and a unit-cell volume that increases proportionally to the (Fe2+ ± Sc) content. The hydrogen atoms form moderate hydrogen bonds between disilicate groups (Si2O7 and Si2O6OH) linked in rows along [101], indicating the presence of one hydroxyl in the formula calculated for Z = 4. All three kristiansenite-group species, i.e. silesiaite, kozłowskiite and kristiansenite, are isostructural.
期刊介绍:
Mineralogical Magazine is an international journal of mineral sciences which covers the fields of mineralogy, crystallography, geochemistry, petrology, environmental geology and economic geology. The journal has been published continuously since the founding of the Mineralogical Society of Great Britain and Ireland in 1876 and is a leading journal in its field.