首页 > 最新文献

Mineralogical Magazine最新文献

英文 中文
Minasgeraisite-(Y) discredited as an ordered intermediate between datolite and hingganite-(Y) minasgeraite -(Y)是一种介于绿沸石和绿沸石-(Y)之间的有序中间体。
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-09-01 DOI: 10.1180/mgm.2023.67
Daniel Atencio
Abstract Minasgeraisite-(Y) is discredited on the basis of it being an ordered intermediate between datolite and hingganite-(Y) (IMA-CNMNC Proposal 23-F). An idealised formula is (Ca2Y2)□2(Be2B2)Si4O16(OH)4, which corresponds to Ca2□B2Si2O8(OH)2 (datolite) + Y2□Be2Si2O8(OH)2 (hingganite-(Y)). The type material is rich in Bi, the Bi-richest portion yet discovered from the type locality is shown to be an intermediate member between datolite, hingganite-(Y) and a hypothetical end-member phase yet to be found of composition Bi2□Be2Si2O8(OH)2. Minasgeraisite-(Y) has a different space group to datolite and hingganite-(Y). This lowering of symmetry to an acentric triclinic system is caused by different element occupancies on the A site of the gadolinite supergroup structure, which for minasgeraisite-(Y) becomes four individual sites. Such an order–disorder of elements is not considered as species-defining criteria despite the change in space group. Therefore, minasgeraisite-(Y) is discredited.
{"title":"Minasgeraisite-(Y) discredited as an ordered intermediate between datolite and hingganite-(Y)","authors":"Daniel Atencio","doi":"10.1180/mgm.2023.67","DOIUrl":"https://doi.org/10.1180/mgm.2023.67","url":null,"abstract":"Abstract Minasgeraisite-(Y) is discredited on the basis of it being an ordered intermediate between datolite and hingganite-(Y) (IMA-CNMNC Proposal 23-F). An idealised formula is (Ca2Y2)□2(Be2B2)Si4O16(OH)4, which corresponds to Ca2□B2Si2O8(OH)2 (datolite) + Y2□Be2Si2O8(OH)2 (hingganite-(Y)). The type material is rich in Bi, the Bi-richest portion yet discovered from the type locality is shown to be an intermediate member between datolite, hingganite-(Y) and a hypothetical end-member phase yet to be found of composition Bi2□Be2Si2O8(OH)2. Minasgeraisite-(Y) has a different space group to datolite and hingganite-(Y). This lowering of symmetry to an acentric triclinic system is caused by different element occupancies on the A site of the gadolinite supergroup structure, which for minasgeraisite-(Y) becomes four individual sites. Such an order–disorder of elements is not considered as species-defining criteria despite the change in space group. Therefore, minasgeraisite-(Y) is discredited.","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45631567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and thermal expansion of end-member olivines I: Crystal and magnetic structure, thermal expansion, and spontaneous magnetostriction of synthetic fayalite, Fe2SiO4, determined by high-resolution neutron powder diffraction 端元橄榄石的结构和热膨胀I:高分辨率中子粉末衍射法测定合成辉绿岩Fe2SiO4的晶体和磁性结构、热膨胀和自发磁致伸缩
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-08-25 DOI: 10.1180/mgm.2023.66
E. Tripoliti, D. Dobson, A. Fortes, A. R. Thomson, P. Schofield, I. Wood
{"title":"Structure and thermal expansion of end-member olivines I: Crystal and magnetic structure, thermal expansion, and spontaneous magnetostriction of synthetic fayalite, Fe2SiO4, determined by high-resolution neutron powder diffraction","authors":"E. Tripoliti, D. Dobson, A. Fortes, A. R. Thomson, P. Schofield, I. Wood","doi":"10.1180/mgm.2023.66","DOIUrl":"https://doi.org/10.1180/mgm.2023.66","url":null,"abstract":"","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45330369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal chemistry of zemannite-type structures: IV. Wortupaite, the first new tellurium oxysalt mineral described from an Australian locality 钙镁石型结构的晶体化学:IV.Wortupaite,澳大利亚第一种新的碲氧盐矿物
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-08-24 DOI: 10.1180/mgm.2023.64
Owen P. Missen, Stuart Mills, J. Brugger, W. Birch, P. Elliott
{"title":"Crystal chemistry of zemannite-type structures: IV. Wortupaite, the first new tellurium oxysalt mineral described from an Australian locality","authors":"Owen P. Missen, Stuart Mills, J. Brugger, W. Birch, P. Elliott","doi":"10.1180/mgm.2023.64","DOIUrl":"https://doi.org/10.1180/mgm.2023.64","url":null,"abstract":"","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44766523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mangani-eckermannite, NaNa2(Mg4Mn3+)Si8O22(OH)2, a new amphibole from Tanohata Mine, Iwate Prefecture, Japan 日本岩手县大和田矿的一种新角闪石——Mangani-eckermannite,NaNa2(Mg4Mn3+)Si8O22(OH)2
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-08-10 DOI: 10.1180/mgm.2023.63
A. Kasatkin, N. Zubkova, A. Agakhanov, N. Chukanov, R. Škoda, F. Nestola, D. I. Belakovskiy, I. Pekov
[BODY]
(身体)
{"title":"Mangani-eckermannite, NaNa2(Mg4Mn3+)Si8O22(OH)2, a new amphibole from Tanohata Mine, Iwate Prefecture, Japan","authors":"A. Kasatkin, N. Zubkova, A. Agakhanov, N. Chukanov, R. Škoda, F. Nestola, D. I. Belakovskiy, I. Pekov","doi":"10.1180/mgm.2023.63","DOIUrl":"https://doi.org/10.1180/mgm.2023.63","url":null,"abstract":"<jats:p>[BODY]</jats:p>","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42133298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magmatic and post-magmatic evolution of the Newania carbonatite complex, Rajasthan, north-western India 印度西北部拉贾斯坦邦Newania碳酸岩杂岩的岩浆和岩浆后演化
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-08-08 DOI: 10.1180/mgm.2023.61
Amritpaul Singh, R. Mitchell, Gurmeet Kaur, D. Sarma
Abstract This work describes the mineralogy of dolomite carbonatite occurring at the Newania carbonatite complex, Rajasthan, north-western India. The mineralogy records the textural and compositional features of magmatic and post-magmatic stages of carbonatite evolution. Ferroan dolomite is the principal constituent and displays variable degrees of deformation, ranging from brittle-to-ductile deformation regimes. Apatite exhibits textural and compositional evolutionary trends from early-to-late stages of carbonatite evolution. Two varieties of amphibole are reported for the first time from this complex, ferri-winchite and cummingtonite; the former is magmatic and the latter is metamorphic in origin. The columbite–tantalite-series minerals are columbite-(Fe), and their paragenesis evolves from composite grains with pyrochlore to individual crystals. Pyrochlore is magmatic with U–Ta–Ti-rich compositions and shows evolution from calciopyrochlore to kenopyrochlore, followed by alteration during late-stages of carbonatite evolution. Monazite and baryte constitute the post-magmatic mineral assemblage; the former is hydrothermal and crystallised after precursor apatite, whereas the latter is associated exclusively with columbite–pyrochlore composites. On the basis of the mineralogy of the carbonatite, it is concluded that the parent magma was generated by low-degree partial melting of magnesite–phlogopite-bearing peridotite.
{"title":"Magmatic and post-magmatic evolution of the Newania carbonatite complex, Rajasthan, north-western India","authors":"Amritpaul Singh, R. Mitchell, Gurmeet Kaur, D. Sarma","doi":"10.1180/mgm.2023.61","DOIUrl":"https://doi.org/10.1180/mgm.2023.61","url":null,"abstract":"Abstract This work describes the mineralogy of dolomite carbonatite occurring at the Newania carbonatite complex, Rajasthan, north-western India. The mineralogy records the textural and compositional features of magmatic and post-magmatic stages of carbonatite evolution. Ferroan dolomite is the principal constituent and displays variable degrees of deformation, ranging from brittle-to-ductile deformation regimes. Apatite exhibits textural and compositional evolutionary trends from early-to-late stages of carbonatite evolution. Two varieties of amphibole are reported for the first time from this complex, ferri-winchite and cummingtonite; the former is magmatic and the latter is metamorphic in origin. The columbite–tantalite-series minerals are columbite-(Fe), and their paragenesis evolves from composite grains with pyrochlore to individual crystals. Pyrochlore is magmatic with U–Ta–Ti-rich compositions and shows evolution from calciopyrochlore to kenopyrochlore, followed by alteration during late-stages of carbonatite evolution. Monazite and baryte constitute the post-magmatic mineral assemblage; the former is hydrothermal and crystallised after precursor apatite, whereas the latter is associated exclusively with columbite–pyrochlore composites. On the basis of the mineralogy of the carbonatite, it is concluded that the parent magma was generated by low-degree partial melting of magnesite–phlogopite-bearing peridotite.","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48666879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical properties and crystal structure of near end-member oxy-dravite from the Beluga occurrence, Nunavut territory, Canada 加拿大Nunavut地区Beluga产状近端元氧生辉石的物理性质和晶体结构
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-08-07 DOI: 10.1180/mgm.2023.59
Lenka Skřápková, J. Cempírek, P. Belley, L. Groat, R. Škoda
Abstract Oxy-dravite, ideally Na(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3(O), was found in a composition near its ideal end-member at the Beluga occurrence, Nunavut territory, Canada. It occurs in retrograde albite–muscovite–corundum–calcite domains in a calc-silicate rock. This uncommon oxy-dravite occurs as dark brown, equant to short-prismatic, idiomorphic crystals with vitreous lustre and up to ca. 4 × 3 cm in size. The oxy-dravite is optically uniaxial (–), with ω = 1.6453(5) and ɛ = 1.6074(18); its calculated density is 3.069 g.cm–3 with a compatibility index of 0.016. The Beluga oxy-dravite has trigonal symmetry, space group R3m with a = 15.9121(2) Å, c = 7.1788(10) Å, V = 1574.12(5) Å3 and Z = 3. The crystal structure was refined to R1 = 1.45 using 1613 unique reflections. The empirical crystal-chemical formula is X(Na0.88Ca0.08□0.03K0.01)Y(Al1.49Mg1.31Fe0.15Ti0.04Zn0.01)Z(Al5.42Mg0.58)T(Si5.84Al0.16O18)B(BO3)3V(OH2.95O0.05)W(O0.84OH0.01F0.15). Oxy-dravite in nature commonly occurs in a solid solution with foitite, schorl and oxy-schorl. At the Beluga occurrence, its minor contents of Al, vacancy [□], and Ca are most likely compensated by (□Al)(NaR2+)–1 and (CaMg)(NaAl)–1 exchanges of the oxy-magnesio-foitite and magnesio-lucchesiite components. The Beluga occurrence of oxy-dravite is characterised by an Mg-rich environment related to a metamorphic overprint of the original sedimentary sequence. This sequence of marine dolomitic argillaceous marl was influenced by (B,Cl)-rich fluids, probably proximally-derived from mineral breakdown reactions in the calc-silicate during the retrograde stage of metamorphism. The locality is a rare example of a tourmaline + corundum assemblage.
{"title":"Physical properties and crystal structure of near end-member oxy-dravite from the Beluga occurrence, Nunavut territory, Canada","authors":"Lenka Skřápková, J. Cempírek, P. Belley, L. Groat, R. Škoda","doi":"10.1180/mgm.2023.59","DOIUrl":"https://doi.org/10.1180/mgm.2023.59","url":null,"abstract":"Abstract Oxy-dravite, ideally Na(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3(O), was found in a composition near its ideal end-member at the Beluga occurrence, Nunavut territory, Canada. It occurs in retrograde albite–muscovite–corundum–calcite domains in a calc-silicate rock. This uncommon oxy-dravite occurs as dark brown, equant to short-prismatic, idiomorphic crystals with vitreous lustre and up to ca. 4 × 3 cm in size. The oxy-dravite is optically uniaxial (–), with ω = 1.6453(5) and ɛ = 1.6074(18); its calculated density is 3.069 g.cm–3 with a compatibility index of 0.016. The Beluga oxy-dravite has trigonal symmetry, space group R3m with a = 15.9121(2) Å, c = 7.1788(10) Å, V = 1574.12(5) Å3 and Z = 3. The crystal structure was refined to R1 = 1.45 using 1613 unique reflections. The empirical crystal-chemical formula is X(Na0.88Ca0.08□0.03K0.01)Y(Al1.49Mg1.31Fe0.15Ti0.04Zn0.01)Z(Al5.42Mg0.58)T(Si5.84Al0.16O18)B(BO3)3V(OH2.95O0.05)W(O0.84OH0.01F0.15). Oxy-dravite in nature commonly occurs in a solid solution with foitite, schorl and oxy-schorl. At the Beluga occurrence, its minor contents of Al, vacancy [□], and Ca are most likely compensated by (□Al)(NaR2+)–1 and (CaMg)(NaAl)–1 exchanges of the oxy-magnesio-foitite and magnesio-lucchesiite components. The Beluga occurrence of oxy-dravite is characterised by an Mg-rich environment related to a metamorphic overprint of the original sedimentary sequence. This sequence of marine dolomitic argillaceous marl was influenced by (B,Cl)-rich fluids, probably proximally-derived from mineral breakdown reactions in the calc-silicate during the retrograde stage of metamorphism. The locality is a rare example of a tourmaline + corundum assemblage.","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48878509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferriandrosite-(Ce), a new member of the epidote supergroup from Betliar, Slovakia 铁雄石-(Ce),绿绿石超群的新成员,产自斯洛伐克的Betliar
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-08-07 DOI: 10.1180/mgm.2023.62
M. Števko, Pavol Myšľan, C. Biagioni, D. Mauro, T. Mikuš
{"title":"Ferriandrosite-(Ce), a new member of the epidote supergroup from Betliar, Slovakia","authors":"M. Števko, Pavol Myšľan, C. Biagioni, D. Mauro, T. Mikuš","doi":"10.1180/mgm.2023.62","DOIUrl":"https://doi.org/10.1180/mgm.2023.62","url":null,"abstract":"","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47035630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MGM volume 87 issue 4 Cover and Front matter 米高梅第87卷第4期封面和封面
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-08-01 DOI: 10.1180/mgm.2023.60
{"title":"MGM volume 87 issue 4 Cover and Front matter","authors":"","doi":"10.1180/mgm.2023.60","DOIUrl":"https://doi.org/10.1180/mgm.2023.60","url":null,"abstract":"","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":"87 1","pages":"f1 - f1"},"PeriodicalIF":2.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41633223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluoralforsite, Ba5(PO4)3F – a new apatite group mineral from the Hatrurim Basin, Negev Desert, Israel 氟长石,Ba5(PO4)3F——一种来自以色列内盖夫沙漠Hatrurim盆地的新磷灰石群矿物
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-07-31 DOI: 10.1180/mgm.2023.58
A. Krzątała, Katarzyna Skrzyńska, G. Cametti, I. Galuskina, Y. Vapnik, E. Galuskin
{"title":"Fluoralforsite, Ba5(PO4)3F – a new apatite group mineral from the Hatrurim Basin, Negev Desert, Israel","authors":"A. Krzątała, Katarzyna Skrzyńska, G. Cametti, I. Galuskina, Y. Vapnik, E. Galuskin","doi":"10.1180/mgm.2023.58","DOIUrl":"https://doi.org/10.1180/mgm.2023.58","url":null,"abstract":"","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43338001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minerals with a palmierite-type structure. Part I. Mazorite Ba3(PO4)2, a new mineral from the Hatrurim Complex in Israel 具有棕榈岩型结构的矿物。第一部分:以色列Hatrurim杂岩中一种新矿物Ba3(PO4)2
IF 2.7 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-07-31 DOI: 10.1180/mgm.2023.57
Rafał Juroszek, I. Galuskina, Biljana Krüger, H. Krüger, Y. Vapnik, V. Kahlenberg, E. Galuskin
: The new mineral mazorite, ideally Ba 3 (PO 4 ) 2 , a P-analogue of gurimite Ba 3 (VO 4 ) 2 , was discovered in rankinite paralava hosted by the massive gehlenite-bearing pyrometamorphic rocks of the Hatrurim Complex in Israel. Previously, this mineral was also detected in xenolith samples from the Bellerberg volcano in Germany. Holotype mazorite usually forms colourless plate crystals up to 70-100 μm in length but also occurs in small aggregates in association with other rare Ba-bearing minerals such as zadovite, celsian, hexacelsian, bennesherite, sanbornite, walstromite, fresnoite, gurimite, alforsite
:在以色列Hatrurim杂岩的含格勒岩的块状高温非晶岩石所含的rankinite paralava中发现了新矿物马佐石,理想情况下为Ba 3(PO4)2,是古里矿Ba 3的P-类似物。此前,在德国贝尔堡火山的捕虏体样本中也检测到了这种矿物。Holotype-mazorite通常形成长度达70-100μm的无色板状晶体,但也以小聚集体的形式存在,与其他稀有的含Ba矿物(如杂辉石、铈矿、六铈矿、bennesherite、sanbornite、walstromite、fresnoite、gurinite、alforsite)结合
{"title":"Minerals with a palmierite-type structure. Part I. Mazorite Ba3(PO4)2, a new mineral from the Hatrurim Complex in Israel","authors":"Rafał Juroszek, I. Galuskina, Biljana Krüger, H. Krüger, Y. Vapnik, V. Kahlenberg, E. Galuskin","doi":"10.1180/mgm.2023.57","DOIUrl":"https://doi.org/10.1180/mgm.2023.57","url":null,"abstract":": The new mineral mazorite, ideally Ba 3 (PO 4 ) 2 , a P-analogue of gurimite Ba 3 (VO 4 ) 2 , was discovered in rankinite paralava hosted by the massive gehlenite-bearing pyrometamorphic rocks of the Hatrurim Complex in Israel. Previously, this mineral was also detected in xenolith samples from the Bellerberg volcano in Germany. Holotype mazorite usually forms colourless plate crystals up to 70-100 μm in length but also occurs in small aggregates in association with other rare Ba-bearing minerals such as zadovite, celsian, hexacelsian, bennesherite, sanbornite, walstromite, fresnoite, gurimite, alforsite","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44578593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Mineralogical Magazine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1