A brGDGT‐Based Reconstruction of Terrestrial Temperature From the Maritime Continent Spanning the Last Glacial Maximum

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Paleoceanography and Paleoclimatology Pub Date : 2023-02-13 DOI:10.1029/2022PA004501
M. Parish, X. Du, S. Bijaksana, J. Russell
{"title":"A brGDGT‐Based Reconstruction of Terrestrial Temperature From the Maritime Continent Spanning the Last Glacial Maximum","authors":"M. Parish, X. Du, S. Bijaksana, J. Russell","doi":"10.1029/2022PA004501","DOIUrl":null,"url":null,"abstract":"The tropics exert enormous influence on global climate. Despite the importance of tropical regions, the terrestrial temperature history in the Indo‐Pacific Warm Pool (IPWP) region during the last deglaciation is poorly constrained. Although numerous sea surface temperature (SST) reconstructions provide estimates of SST warming from the Last Glacial Maximum to the Holocene, the timing of the onset of deglacial warming varies between records and inhibits determining the forcings driving deglacial warming in the IPWP. We present a 60,000‐year long temperature reconstruction based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) in a sediment core from Lake Towuti, located in Sulawesi, Indonesia. BrGDGTs are bacterial membrane‐spanning lipids that, globally, become more methylated with decreasing temperature and more cyclized with decreasing pH. Although changes in temperature are the dominant control on brGDGTs in regional and global calibrations, we find that the cyclization of the brGDGTs is a major mode of variation at Lake Towuti that records important changes in the lacustrine biogeochemical environment. We separate the influence of lake chemistry changes from temperature changes on the brGDGT records, and develop a temperature record spanning the last 60,000 years. The timing of the deglacial warming in our record occurs after the onset of the deglacial increase in CO2 concentrations, which suggests rising greenhouse gas concentrations and the associated radiative forcing may have forced deglacial warming in the IPWP. Peaks in temperature around 55 and 34 ka indicate that Northern Hemisphere summer insolation may also influence land surface temperature in the IPWP region.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2022PA004501","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

The tropics exert enormous influence on global climate. Despite the importance of tropical regions, the terrestrial temperature history in the Indo‐Pacific Warm Pool (IPWP) region during the last deglaciation is poorly constrained. Although numerous sea surface temperature (SST) reconstructions provide estimates of SST warming from the Last Glacial Maximum to the Holocene, the timing of the onset of deglacial warming varies between records and inhibits determining the forcings driving deglacial warming in the IPWP. We present a 60,000‐year long temperature reconstruction based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) in a sediment core from Lake Towuti, located in Sulawesi, Indonesia. BrGDGTs are bacterial membrane‐spanning lipids that, globally, become more methylated with decreasing temperature and more cyclized with decreasing pH. Although changes in temperature are the dominant control on brGDGTs in regional and global calibrations, we find that the cyclization of the brGDGTs is a major mode of variation at Lake Towuti that records important changes in the lacustrine biogeochemical environment. We separate the influence of lake chemistry changes from temperature changes on the brGDGT records, and develop a temperature record spanning the last 60,000 years. The timing of the deglacial warming in our record occurs after the onset of the deglacial increase in CO2 concentrations, which suggests rising greenhouse gas concentrations and the associated radiative forcing may have forced deglacial warming in the IPWP. Peaks in temperature around 55 and 34 ka indicate that Northern Hemisphere summer insolation may also influence land surface temperature in the IPWP region.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于brdgt的末次盛冰期海洋大陆陆地温度重建
热带地区对全球气候有着巨大的影响。尽管热带地区具有重要意义,但印度洋-太平洋暖池(IPWP)地区在末次冰消期的陆地温度史却知之甚少。尽管大量的海表温度(SST)重建提供了从末次盛冰期到全新世海表温度变暖的估计,但不同记录之间冰化变暖开始的时间不同,并且抑制了IPWP中驱动冰化变暖的强迫的确定。我们基于位于印度尼西亚苏拉威西的托乌提湖沉积物岩心中的支链甘油二烷基甘油四醚(brGDGTs)进行了60,000年的温度重建。BrGDGTs是细菌跨膜脂质,在全球范围内,随着温度的降低甲基化程度越来越高,随着ph的降低环化程度越来越高。尽管在区域和全球校准中,温度的变化是BrGDGTs的主要控制因素,但我们发现BrGDGTs的环化是图乌提湖生物地球化学环境的重要变化的主要变化模式。我们将湖泊化学变化和温度变化对brGDGT记录的影响分离出来,建立了一个跨越6万年的温度记录。在我们的记录中,去冰变暖的时间发生在CO2浓度开始增加之后,这表明温室气体浓度的上升和相关的辐射强迫可能迫使IPWP的去冰变暖。55和34 ka前后的温度峰值表明,北半球夏季日照也可能影响IPWP区域的地表温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Paleoceanography and Paleoclimatology
Paleoceanography and Paleoclimatology Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.20
自引率
11.40%
发文量
107
期刊介绍: Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.
期刊最新文献
Orbital (Hydro)Climate Variability in the Ice-Free Early Eocene Arctic. Biogeochemical Traits of a High Latitude South Pacific Ocean Calcareous Nannoplankton Community During the Oligocene. Summer and Autumn Insolation as the Pacemaker of Surface Wind and Precipitation Dynamics Over Tropical Indian Ocean During the Holocene: Insights From Paleoproductivity Records and Paleoclimate Simulations Biomarker Evidence for an MIS M2 Glacial‐Pluvial in the Mojave Desert Before Warming and Drying in the Late Pliocene Detecting Paleoclimate Transitions With Laplacian Eigenmaps of Recurrence Matrices (LERM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1