From digital holographic microscopy to optical coherence tomography – separate past and a common goal

IF 0.5 Q4 OPTICS Photonics Letters of Poland Pub Date : 2021-12-30 DOI:10.4302/plp.v13i4.1130
A. Kuś, W. Krauze, M. Kujawińska
{"title":"From digital holographic microscopy to optical coherence tomography – separate past and a common goal","authors":"A. Kuś, W. Krauze, M. Kujawińska","doi":"10.4302/plp.v13i4.1130","DOIUrl":null,"url":null,"abstract":"In this paper we briefly present the history and outlook on the development of two seemingly distant techniques which may be brought close together with a unified theoretical model described as common k-space theory. This theory also known as the Fourier diffraction theorem is much less common in optical coherence tomography than its traditional mathematical model, but it has been extensively studied in digital holography and, more importantly, optical diffraction tomography. As demonstrated with several examples, this link is one of the important factors for future development of both techniques. Full Text: PDF ReferencesN. Leith, J. Upatnieks, \"Reconstructed Wavefronts and Communication Theory\", J. Opt. Soc. Am. 52(10), 1123 (1962). CrossRef Y. Park, C. Depeursinge, G. Popescu, \"Quantitative phase imaging in biomedicine\", Nat. Photonics 12, 578 (2018). CrossRef D. Huang et al., \"Optical Coherence Tomography\", Science 254(5035), 1178 (1991). CrossRef D. P. Popescu, C. Flueraru, S. Chang, J. Disano, S. Sherif, M.G. Sowa, \"Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications\", Biophys. Rev. 3(3), 155 (2011). CrossRef M. Wojtkowski, V. Srinivasan, J.G. Fujimoto, T. Ko, J.S. Schuman, A. Kowalczyk, J.S. Duker, \"Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography\", Ophthalmology 112(10), 1734 (2005). CrossRef K.C. Zhou, R. Qian, A.-H. Dhalla, S. Farsiu, J.A. Izatt, \"Unified k-space theory of optical coherence tomography\", Adv. Opt. Photon. 13(2), 462 (2021). CrossRef A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, \"Measurement of intraocular distances by backscattering spectral interferometry\", Opt. Comm. 117(1-2), 43 (1995). CrossRef E. Wolf, \"Determination of the Amplitude and the Phase of Scattered Fields by Holography\", J. Opt. Soc. Am. 60(1), 18 (1970). CrossRef E. Wolf, \"Three-dimensional structure determination of semi-transparent objects from holographic data\", Opt. Comm. 1(4), 153 (1969). CrossRef V. Balasubramani et al., \"Roadmap on Digital Holography-Based Quantitative Phase Imaging\", J. Imaging 7(12), 252 (2021). CrossRef A. Kuś, W. Krauze, P.L. Makowski, M. Kujawińska, \"Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging (Invited paper)\", ETRI J. 41(1), 61 (2019). CrossRef A. Kuś, M. Dudek, M. Kujawińska, B. Kemper, A. Vollmer, \"Tomographic phase microscopy of living three-dimensional cell cultures\", J. Biomed. Opt. 19(4), 46009 (2014). CrossRef O. Haeberlé, K. Belkebir, H. Giovaninni, A. Sentenac, \"Tomographic diffractive microscopy: basics, techniques and perspectives\", J. Mod. Opt. 57(9), 686 (2010). CrossRef B. Simon et al., \"Tomographic diffractive microscopy with isotropic resolution\", Optica 4(4), 460 (2017). CrossRef B.A. Roberts, A.C. Kak, \"Reflection Mode Diffraction Tomography\", Ultrason. Imag. 7, 300 (1985). CrossRef M. Sarmis et al., \"High resolution reflection tomographic diffractive microscopy\", J. Mod. Opt. 57(9), 740 (2010). CrossRef L. Foucault et al., \"Versatile transmission/reflection tomographic diffractive microscopy approach\", J. Opt. Soc. Am. A 36(11), C18 (2019). CrossRef W. Krauze, P. Ossowski, M. Nowakowski, M. Szkulmowski, M. Kujawińska, \"Enhanced QPI functionality by combining OCT and ODT methods\", Proc. SPIE 11653, 116530B (2021). CrossRef E. Mudry, P.C. Chaumet, K. Belkebir, G. Maire, A. Sentenac, \"Mirror-assisted tomographic diffractive microscopy with isotropic resolution\", Opt. Lett. 35(11), 1857 (2010). CrossRef P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, P. So, \"Scanning color optical tomography (SCOT)\", Opt. Expr. 23(15), 19752 (2015). CrossRef J. Jung, K. Kim, J. Yoon, Y. Park, \"Hyperspectral optical diffraction tomography\", Opt. Expr. 24(3), 1881 (2016). CrossRef T. Zhang et al., Biomed. \"Multi-wavelength multi-angle reflection tomography\", Opt. Expr. 26(20), 26093 (2018). CrossRef R.A. Leitgeb, \"En face optical coherence tomography: a technology review [Invited]\", Biomed. Opt. Expr. 10(5), 2177 (2019). CrossRef J.F. de Boer, R. Leitgeb, M. Wojtkowski, \"Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited]\", Biomed. Opt. Expr. 8(7), 3248 (2017). CrossRef T. Anna, V. Srivastava, C. Shakher, \"Transmission Mode Full-Field Swept-Source Optical Coherence Tomography for Simultaneous Amplitude and Quantitative Phase Imaging of Transparent Objects\", IEEE Photon. Technol. Lett. 23(11), 899 (2011). CrossRef M.T. Rinehart, V. Jaedicke, A. Wax, \"Quantitative phase microscopy with off-axis optical coherence tomography\", Opt. Lett. 39(7), 1996 (2014). CrossRef C. Photiou, C. Pitris, \"Dual-angle optical coherence tomography for index of refraction estimation using rigid registration and cross-correlation\", J. Biomed. Opt. 24(10), 1 (2019). CrossRef Y. Zhou, K.K.H. Chan, T. Lai, S. Tang, \"Characterizing refractive index and thickness of biological tissues using combined multiphoton microscopy and optical coherence tomography\", Biomed. Opt. Expr. 4(1), 38 (2013). CrossRef K.C. Zhou, R. Qian, S. Degan, S. Farsiu, J.A. Izatt, \"Optical coherence refraction tomography\", Nat. Photon. 13, 794 (2019). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/plp.v13i4.1130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we briefly present the history and outlook on the development of two seemingly distant techniques which may be brought close together with a unified theoretical model described as common k-space theory. This theory also known as the Fourier diffraction theorem is much less common in optical coherence tomography than its traditional mathematical model, but it has been extensively studied in digital holography and, more importantly, optical diffraction tomography. As demonstrated with several examples, this link is one of the important factors for future development of both techniques. Full Text: PDF ReferencesN. Leith, J. Upatnieks, "Reconstructed Wavefronts and Communication Theory", J. Opt. Soc. Am. 52(10), 1123 (1962). CrossRef Y. Park, C. Depeursinge, G. Popescu, "Quantitative phase imaging in biomedicine", Nat. Photonics 12, 578 (2018). CrossRef D. Huang et al., "Optical Coherence Tomography", Science 254(5035), 1178 (1991). CrossRef D. P. Popescu, C. Flueraru, S. Chang, J. Disano, S. Sherif, M.G. Sowa, "Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications", Biophys. Rev. 3(3), 155 (2011). CrossRef M. Wojtkowski, V. Srinivasan, J.G. Fujimoto, T. Ko, J.S. Schuman, A. Kowalczyk, J.S. Duker, "Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography", Ophthalmology 112(10), 1734 (2005). CrossRef K.C. Zhou, R. Qian, A.-H. Dhalla, S. Farsiu, J.A. Izatt, "Unified k-space theory of optical coherence tomography", Adv. Opt. Photon. 13(2), 462 (2021). CrossRef A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry", Opt. Comm. 117(1-2), 43 (1995). CrossRef E. Wolf, "Determination of the Amplitude and the Phase of Scattered Fields by Holography", J. Opt. Soc. Am. 60(1), 18 (1970). CrossRef E. Wolf, "Three-dimensional structure determination of semi-transparent objects from holographic data", Opt. Comm. 1(4), 153 (1969). CrossRef V. Balasubramani et al., "Roadmap on Digital Holography-Based Quantitative Phase Imaging", J. Imaging 7(12), 252 (2021). CrossRef A. Kuś, W. Krauze, P.L. Makowski, M. Kujawińska, "Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging (Invited paper)", ETRI J. 41(1), 61 (2019). CrossRef A. Kuś, M. Dudek, M. Kujawińska, B. Kemper, A. Vollmer, "Tomographic phase microscopy of living three-dimensional cell cultures", J. Biomed. Opt. 19(4), 46009 (2014). CrossRef O. Haeberlé, K. Belkebir, H. Giovaninni, A. Sentenac, "Tomographic diffractive microscopy: basics, techniques and perspectives", J. Mod. Opt. 57(9), 686 (2010). CrossRef B. Simon et al., "Tomographic diffractive microscopy with isotropic resolution", Optica 4(4), 460 (2017). CrossRef B.A. Roberts, A.C. Kak, "Reflection Mode Diffraction Tomography", Ultrason. Imag. 7, 300 (1985). CrossRef M. Sarmis et al., "High resolution reflection tomographic diffractive microscopy", J. Mod. Opt. 57(9), 740 (2010). CrossRef L. Foucault et al., "Versatile transmission/reflection tomographic diffractive microscopy approach", J. Opt. Soc. Am. A 36(11), C18 (2019). CrossRef W. Krauze, P. Ossowski, M. Nowakowski, M. Szkulmowski, M. Kujawińska, "Enhanced QPI functionality by combining OCT and ODT methods", Proc. SPIE 11653, 116530B (2021). CrossRef E. Mudry, P.C. Chaumet, K. Belkebir, G. Maire, A. Sentenac, "Mirror-assisted tomographic diffractive microscopy with isotropic resolution", Opt. Lett. 35(11), 1857 (2010). CrossRef P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, P. So, "Scanning color optical tomography (SCOT)", Opt. Expr. 23(15), 19752 (2015). CrossRef J. Jung, K. Kim, J. Yoon, Y. Park, "Hyperspectral optical diffraction tomography", Opt. Expr. 24(3), 1881 (2016). CrossRef T. Zhang et al., Biomed. "Multi-wavelength multi-angle reflection tomography", Opt. Expr. 26(20), 26093 (2018). CrossRef R.A. Leitgeb, "En face optical coherence tomography: a technology review [Invited]", Biomed. Opt. Expr. 10(5), 2177 (2019). CrossRef J.F. de Boer, R. Leitgeb, M. Wojtkowski, "Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited]", Biomed. Opt. Expr. 8(7), 3248 (2017). CrossRef T. Anna, V. Srivastava, C. Shakher, "Transmission Mode Full-Field Swept-Source Optical Coherence Tomography for Simultaneous Amplitude and Quantitative Phase Imaging of Transparent Objects", IEEE Photon. Technol. Lett. 23(11), 899 (2011). CrossRef M.T. Rinehart, V. Jaedicke, A. Wax, "Quantitative phase microscopy with off-axis optical coherence tomography", Opt. Lett. 39(7), 1996 (2014). CrossRef C. Photiou, C. Pitris, "Dual-angle optical coherence tomography for index of refraction estimation using rigid registration and cross-correlation", J. Biomed. Opt. 24(10), 1 (2019). CrossRef Y. Zhou, K.K.H. Chan, T. Lai, S. Tang, "Characterizing refractive index and thickness of biological tissues using combined multiphoton microscopy and optical coherence tomography", Biomed. Opt. Expr. 4(1), 38 (2013). CrossRef K.C. Zhou, R. Qian, S. Degan, S. Farsiu, J.A. Izatt, "Optical coherence refraction tomography", Nat. Photon. 13, 794 (2019). CrossRef
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从数字全息显微镜到光学相干断层扫描——分离过去和共同目标
在本文中,我们简要介绍了两种看似遥远的技术的发展历史和前景,这两种技术可以与一个统一的理论模型(称为公共k空间理论)紧密结合在一起。这一理论也被称为傅立叶衍射定理,在光学相干层析成像中比其传统的数学模型不常见,但它在数字全息,更重要的是在光学衍射层析成像中得到了广泛的研究。如几个例子所示,这种联系是这两种技术未来发展的重要因素之一。全文:PDF参考文献。Leith,J.Upatnieks,“重构的波前与传播理论”,J.Opt。Soc.Am.52(10),1123(1962)。CrossRef Y.Park,C.Depeursinge,G.Popescu,“生物医学中的定量相位成像”,《国家光子学》12578(2018)。CrossRef D.Huang等,“光学相干层析成像”,科学254(5035),1178(1991)。CrossRef D.P.Popescu,C.Flueraru,S.Chang,J.Disano,S.Sherif,M.G.Sowa,“光学相干断层扫描:基本原理、仪器设计和生物医学应用”,生物物理学。修订版3(3),155(2011)。CrossRef M.Wojtkowski,V.Srinivasan,J.G.Fujimoto,T.Ko,J.S.Schuman,A.Kowalczyk,J.S.Duker,“高速超高分辨率光学相干断层扫描的三维视网膜成像”,眼科112(10),1734(2005)。交叉参考周,钱,A.-H.Dhalla,S.Farsiu,J.A.Izatt,“光学相干层析成像的统一K空间理论”,Adv.Opt。光子13(2),462(2021)。CrossRef A.F.Fercher,C.K.Hitzenberger,G.Kamp,S.Y.El Zaiat,“通过后向散射光谱干涉测量法测量眼内距离”,Opt。通信117(1-2),43(1995)。CrossRef E.Wolf,“用全息法测定散射场的振幅和相位”,J.Opt。Soc.Am.60(1),18(1970)。CrossRef E.Wolf,“从全息数据中确定半透明物体的三维结构”,Opt。通信1(4),153(1969)。CrossRef V.Balasubramani等人,“基于数字全息的定量相位成像路线图”,《成像杂志》7(12),252(2021)。CrossRef A.Kuś,W.Krauze,P.L.Makowski,M.Kujawińska,“全息层析成像:3D定量生物医学成像的硬件和软件解决方案(受邀论文)”,ETRI J.41(1),61(2019)。CrossRef A.Kuś,M.Dudek,M.Kujawińska,B.Kemper,A.Vollmer,“活三维细胞培养物的断层扫描相显微镜”,J.Biomed。选择19(4),46009(2014)。CrossRef O.Haeberlé,K.Belkebir,H.Giovanni,A.Sentenac,“层析衍射显微镜:基础、技术和视角”,J.Mod。选择57(9),686(2010)。CrossRef B.Simon等人,“各向同性分辨率的层析衍射显微镜”,Optica 4(4),460(2017)。CrossRef B.A.Roberts,A.C.Kak,“反射模式衍射层析成像”,Ultrason。Imag。7300(1985)。CrossRef M.Sarmis等人,“高分辨率反射层析衍射显微镜”,J.Mod。选择57(9)、740(2010)。CrossRef L.Foucault等人,“通用透射/反射层析衍射显微镜方法”,J.Opt。Soc.Am.A 36(11),C18(2019)。CrossRef W.Krauze,P.Ossowski,M.Nowakowski,M.Szkulmowski,M.Kujawińska,“通过结合OCT和ODT方法增强QPI功能”,Proc。SPIE 11653116530b(2021)。CrossRef E.Mudry,P.C.Chaumet,K.Belkebir,G.Maire,A.Sentenac,“各向同性分辨率的镜辅助断层衍射显微镜”,Opt。Lett。35(11),1857(2010)。CrossRef P.Hosseini,Y.Sung,Y.Choi,N.Lue,Z.Yaqoob,P.So,“扫描彩色光学断层扫描(SCOT)”,Opt。Expr。23(15),19752(2015)。CrossRef J.Jung,K.Kim,J.Yoon,Y.Park,“高光谱光学衍射层析成像”,Opt。Expr。24(3),1881(2016)。CrossRef T.Zhang等人,Biomed。“多波长多角度反射层析成像”,Opt。Expr。26(20),26093(2018)。CrossRef R.A.Leitgeb,“正面光学相干断层扫描:技术综述[受邀]”,Biomed。选择Expr。10(5),2177(2019)。CrossRef J.F.de Boer,R.Leitgeb,M.Wojtkowski,“光学相干断层扫描的二十五年:傅立叶域OCT[邀请]提供的灵敏度和速度的范式转变”,Biomed。选择Expr。8(7),3248(2017)。CrossRef T.Anna,V.Srivastava,C.Shakher,“透明物体同时振幅和定量相位成像的透射模式全场扫描源光学相干层析成像”,IEEE Photon。Technol。Lett。23(11),899(2011)。CrossRef M.T.Rinehart,V.Jaedicke,A.Wax,“带离轴光学相干断层扫描的定量相位显微镜”,Opt。Lett。39(7),1996(2014)。CrossRef C.Photiou,C.Pitris,“使用刚性配准和互相关估计折射率的双角度光学相干断层扫描”,J.Biomed。选择24(10),1(2019)。CrossRef周,陈克辉,赖,S。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
24
期刊最新文献
Making use of Digital Image Correlation to identify the true character of the applied load Technological challenges in the development of silica-titania platform for integrated optics Modelling of Germanium-Based Perovskite Solar Cell for Different Hole Transport Materials and Defect Density Application of fiber optic sensors using Machine Learning algorithms for temperature measurement of lithium-ion batteries Focusing properties of Azimuthally Polarized Lorentz Gauss Vortex Beam through a Dielectric Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1