A Full-Stack View of Probabilistic Computing With p-Bits: Devices, Architectures, and Algorithms

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2023-03-14 DOI:10.1109/JXCDC.2023.3256981
Shuvro Chowdhury;Andrea Grimaldi;Navid Anjum Aadit;Shaila Niazi;Masoud Mohseni;Shun Kanai;Hideo Ohno;Shunsuke Fukami;Luke Theogarajan;Giovanni Finocchio;Supriyo Datta;Kerem Y. Camsari
{"title":"A Full-Stack View of Probabilistic Computing With p-Bits: Devices, Architectures, and Algorithms","authors":"Shuvro Chowdhury;Andrea Grimaldi;Navid Anjum Aadit;Shaila Niazi;Masoud Mohseni;Shun Kanai;Hideo Ohno;Shunsuke Fukami;Luke Theogarajan;Giovanni Finocchio;Supriyo Datta;Kerem Y. Camsari","doi":"10.1109/JXCDC.2023.3256981","DOIUrl":null,"url":null,"abstract":"The transistor celebrated its 75th birthday in 2022. The continued scaling of the transistor defined by Moore’s law continues, albeit at a slower pace. Meanwhile, computing demands and energy consumption required by modern artificial intelligence (AI) algorithms have skyrocketed. As an alternative to scaling transistors for general-purpose computing, the integration of transistors with unconventional technologies has emerged as a promising path for domain-specific computing. In this article, we provide a full-stack review of probabilistic computing with p-bits as a representative example of the energy-efficient and domain-specific computing movement. We argue that p-bits could be used to build energy-efficient probabilistic systems, tailored for probabilistic algorithms and applications. From hardware, architecture, and algorithmic perspectives, we outline the main applications of probabilistic computers ranging from probabilistic machine learning (ML) and AI to combinatorial optimization and quantum simulation. Combining emerging nanodevices with the existing CMOS ecosystem will lead to probabilistic computers with orders of magnitude improvements in energy efficiency and probabilistic sampling, potentially unlocking previously unexplored regimes for powerful probabilistic algorithms.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/10138050/10068500.pdf","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10068500/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 16

Abstract

The transistor celebrated its 75th birthday in 2022. The continued scaling of the transistor defined by Moore’s law continues, albeit at a slower pace. Meanwhile, computing demands and energy consumption required by modern artificial intelligence (AI) algorithms have skyrocketed. As an alternative to scaling transistors for general-purpose computing, the integration of transistors with unconventional technologies has emerged as a promising path for domain-specific computing. In this article, we provide a full-stack review of probabilistic computing with p-bits as a representative example of the energy-efficient and domain-specific computing movement. We argue that p-bits could be used to build energy-efficient probabilistic systems, tailored for probabilistic algorithms and applications. From hardware, architecture, and algorithmic perspectives, we outline the main applications of probabilistic computers ranging from probabilistic machine learning (ML) and AI to combinatorial optimization and quantum simulation. Combining emerging nanodevices with the existing CMOS ecosystem will lead to probabilistic computers with orders of magnitude improvements in energy efficiency and probabilistic sampling, potentially unlocking previously unexplored regimes for powerful probabilistic algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
概率计算的全栈视图与p位:设备,架构和算法
晶体管在2022年庆祝了其75岁生日。摩尔定律所定义的晶体管的持续缩小仍在继续,尽管速度有所放缓。与此同时,现代人工智能(AI)算法所需的计算需求和能耗也在飙升。作为通用计算的缩放晶体管的替代方案,晶体管与非常规技术的集成已经成为特定领域计算的一个有前途的途径。在本文中,我们提供了p位概率计算的全栈回顾,作为节能和特定领域计算运动的代表性示例。我们认为,p比特可以用来构建节能的概率系统,为概率算法和应用量身定制。从硬件、架构和算法的角度,我们概述了概率计算机的主要应用,从概率机器学习(ML)和人工智能到组合优化和量子模拟。将新兴的纳米器件与现有的CMOS生态系统相结合,将导致概率计算机在能源效率和概率采样方面有数量级的提高,有可能为强大的概率算法打开以前未开发的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
期刊最新文献
Design Considerations for Sub-1-V 1T1C FeRAM Memory Circuits Heterogeneous Integration Technologies for Artificial Intelligence Applications Scaling Logic Area With Multitier Standard Cells Accuracy Improvement With Weight Mapping Strategy and Output Transformation for STT-MRAM-Based Computing-in-Memory Energy-/Carbon-Aware Evaluation and Optimization of 3-D IC Architecture With Digital Compute-in-Memory Designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1