A nondegenerate Vuong test and post selection confidence intervals for semi/nonparametric models

IF 1.9 3区 经济学 Q2 ECONOMICS Quantitative Economics Pub Date : 2020-10-07 DOI:10.3982/qe1312
Z. Liao, Xiaoxia Shi
{"title":"A nondegenerate Vuong test and post selection confidence intervals for semi/nonparametric models","authors":"Z. Liao, Xiaoxia Shi","doi":"10.3982/qe1312","DOIUrl":null,"url":null,"abstract":"This paper proposes a new model selection test for the statistical comparison of semi/non‐parametric models based on a general quasi‐likelihood ratio criterion. An important feature of the new test is its uniformly exact asymptotic size in the overlapping nonnested case, as well as in the easier nested and strictly nonnested cases. The uniform size control is achieved without using pretesting, sample‐splitting, or simulated critical values. We also show that the test has nontrivial power against all ‐local alternatives and against some local alternatives that converge to the null faster than . Finally, we provide a framework for conducting uniformly valid post model selection inference for model parameters. The finite sample performance of the nondegenerate test and that of the post model selection inference procedure are illustrated in a mean‐regression example by Monte Carlo. Asymptotic size model selection/comparison test post model selection inference semi/nonparametric models C14 C31 C32","PeriodicalId":46811,"journal":{"name":"Quantitative Economics","volume":"11 1","pages":"983-1017"},"PeriodicalIF":1.9000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3982/qe1312","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.3982/qe1312","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 8

Abstract

This paper proposes a new model selection test for the statistical comparison of semi/non‐parametric models based on a general quasi‐likelihood ratio criterion. An important feature of the new test is its uniformly exact asymptotic size in the overlapping nonnested case, as well as in the easier nested and strictly nonnested cases. The uniform size control is achieved without using pretesting, sample‐splitting, or simulated critical values. We also show that the test has nontrivial power against all ‐local alternatives and against some local alternatives that converge to the null faster than . Finally, we provide a framework for conducting uniformly valid post model selection inference for model parameters. The finite sample performance of the nondegenerate test and that of the post model selection inference procedure are illustrated in a mean‐regression example by Monte Carlo. Asymptotic size model selection/comparison test post model selection inference semi/nonparametric models C14 C31 C32
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半/非参数模型的非退化Vuong检验和后选择置信区间
本文提出了一种新的基于一般拟似然比准则的半/非参数模型统计比较模型选择检验方法。新测试的一个重要特征是,在重叠的非嵌套情况下,以及在更容易嵌套和严格非嵌套的情况下,它的一致精确渐近大小。在不使用预测试、样本分割或模拟临界值的情况下实现了均匀尺寸控制。我们还表明,该测试对所有局部备选方案和一些收敛到零的局部备选方案具有非平凡的能力。最后,我们提供了一个框架,用于对模型参数进行一致有效的模型选择后推理。蒙特卡罗的均值回归示例说明了非退化检验和模型选择后推理程序的有限样本性能。渐近大小模型选择/比较测试模型选择后推断半/非参数模型C14 C31 C32
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
5.60%
发文量
28
审稿时长
52 weeks
期刊最新文献
Geometric methods for finite rational inattention Measuring trust in institutions and its causal effect A robust permutation test for subvector inference in linear regressions Difficulties in testing for capital overaccumulation Bootstrapping Laplace transforms of volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1