{"title":"Excellent energy storage performance in NaNbO3-based relaxor antiferroeic ceramics under a low electric field","authors":"Xuxin Cheng, Xiaoming Chen, Pengyuan Fan","doi":"10.1007/s10832-022-00283-w","DOIUrl":null,"url":null,"abstract":"<div><p>NaNbO<sub>3</sub>-based antiferroelectric (AFE) ceramics have the prominent advantages of stable performance and low cost. However, its energy storage property is often remarkably limited by the hysteresis of the antiferroelectric to ferroelectric phase transformation. In this work, 0.88Na(Nb<sub>1−<i>x</i></sub>Ta<sub><i>x</i></sub>)O<sub>3</sub>–0.12Bi<sub>0.2</sub>Sr<sub>0.7</sub>TiO<sub>3</sub> (<i>x</i> = 0–0.075) antiferroelectric ceramics were synthesized using a conventional mixed oxide route. Ta<sup>5+</sup> were completely dissolved into the lattice of 0.88NaNbO<sub>3</sub>–0.12Bi<sub>0.2</sub>Sr<sub>0.7</sub>TiO<sub>3</sub> to form a pure perovskite structure. With increased Ta content, the AFE orthogonal P phase was replaced by AFE orthogonal R phase progressively. Meanwhile, the dielectric constant curve showed relaxor-like properties. As a result, slender <i>P–E</i> curves with reduced hysteresis loss and decreased residual polarization were achieved. Interestingly, a large recoverable energy storage density (<i>W</i><sub>rec</sub> ~ 2.16 J cm<sup>−3</sup>) and high energy storage efficiency (<i>η</i> ~ 80.7%) were obtained simultaneously under a low driving electric field of 15 kV mm<sup>−1</sup> at doping ratio (<i>x</i>) of 0.075. In addition, the 0.88Na(Nb<sub>0.925</sub>Ta<sub>0.075</sub>)O<sub>3</sub>–0.12Bi<sub>0.2</sub>Sr<sub>0.7</sub>TiO<sub>3</sub> sample exhibited excellent temperature stability, indicating an ideal candidate in future pulsed power capacitor.\n</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"48 4","pages":"198 - 206"},"PeriodicalIF":1.7000,"publicationDate":"2022-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-022-00283-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 5
Abstract
NaNbO3-based antiferroelectric (AFE) ceramics have the prominent advantages of stable performance and low cost. However, its energy storage property is often remarkably limited by the hysteresis of the antiferroelectric to ferroelectric phase transformation. In this work, 0.88Na(Nb1−xTax)O3–0.12Bi0.2Sr0.7TiO3 (x = 0–0.075) antiferroelectric ceramics were synthesized using a conventional mixed oxide route. Ta5+ were completely dissolved into the lattice of 0.88NaNbO3–0.12Bi0.2Sr0.7TiO3 to form a pure perovskite structure. With increased Ta content, the AFE orthogonal P phase was replaced by AFE orthogonal R phase progressively. Meanwhile, the dielectric constant curve showed relaxor-like properties. As a result, slender P–E curves with reduced hysteresis loss and decreased residual polarization were achieved. Interestingly, a large recoverable energy storage density (Wrec ~ 2.16 J cm−3) and high energy storage efficiency (η ~ 80.7%) were obtained simultaneously under a low driving electric field of 15 kV mm−1 at doping ratio (x) of 0.075. In addition, the 0.88Na(Nb0.925Ta0.075)O3–0.12Bi0.2Sr0.7TiO3 sample exhibited excellent temperature stability, indicating an ideal candidate in future pulsed power capacitor.
期刊介绍:
While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including:
-insulating to metallic and fast ion conductivity
-piezo-, ferro-, and pyro-electricity
-electro- and nonlinear optical properties
-feromagnetism.
When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice.
The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.