Liting Liang, Hong Li, Xiaoyu Cai, Yue Dai, Jun Yan
{"title":"Enhancing the outline sharpness of crosslinked printed cotton fabrics using ethylene glycol diglycidyl ether","authors":"Liting Liang, Hong Li, Xiaoyu Cai, Yue Dai, Jun Yan","doi":"10.1111/cote.12709","DOIUrl":null,"url":null,"abstract":"<p>In the current study, to obtain environmentally friendly printed cotton fabrics with a clear contour edge, ethylene glycol diglycidyl ether (EGDE) as a crosslinking agent and guar gum as a thickener were used with natural madder dye. The solid content of the thickener was assessed to determine the optimal viscosity of the printing paste. Scanning electron microscopy images and colour depth (<i>K/S</i>) values were used to analyse the surface morphology and printing properties. The pattern outline of the printed cotton fabric was assessed with an optical microscope. Also, the overall fastness properties of the printed fabrics were evaluated. The results showed that when the solid content of guar gum was 2.5%, the viscosity of the printing paste was close to 10 000 mPa.s, which was suitable for printing cotton fabrics. Scanning electron microscopy analysis showed that most of the printing paste was removed during the washing process, and did not affect the microstructure of the cotton fabric. Compared with direct printed cotton fabrics, the <i>K/S</i> values of mordant and crosslinked printed cotton fabrics increased by 3.12 and 4.01, respectively. In the optical microscopy photographs, the mordant and crosslinked printed cotton fabrics displayed a clear outline sharpness of the printed pattern, and excellent printed products were obtained. The colour fastness to washing, rubbing and light of the crosslinked printed cotton fabric were significantly improved, reaching levels of 4-5.</p>","PeriodicalId":10502,"journal":{"name":"Coloration Technology","volume":"140 2","pages":"270-278"},"PeriodicalIF":2.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coloration Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cote.12709","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In the current study, to obtain environmentally friendly printed cotton fabrics with a clear contour edge, ethylene glycol diglycidyl ether (EGDE) as a crosslinking agent and guar gum as a thickener were used with natural madder dye. The solid content of the thickener was assessed to determine the optimal viscosity of the printing paste. Scanning electron microscopy images and colour depth (K/S) values were used to analyse the surface morphology and printing properties. The pattern outline of the printed cotton fabric was assessed with an optical microscope. Also, the overall fastness properties of the printed fabrics were evaluated. The results showed that when the solid content of guar gum was 2.5%, the viscosity of the printing paste was close to 10 000 mPa.s, which was suitable for printing cotton fabrics. Scanning electron microscopy analysis showed that most of the printing paste was removed during the washing process, and did not affect the microstructure of the cotton fabric. Compared with direct printed cotton fabrics, the K/S values of mordant and crosslinked printed cotton fabrics increased by 3.12 and 4.01, respectively. In the optical microscopy photographs, the mordant and crosslinked printed cotton fabrics displayed a clear outline sharpness of the printed pattern, and excellent printed products were obtained. The colour fastness to washing, rubbing and light of the crosslinked printed cotton fabric were significantly improved, reaching levels of 4-5.
期刊介绍:
The primary mission of Coloration Technology is to promote innovation and fundamental understanding in the science and technology of coloured materials by providing a medium for communication of peer-reviewed research papers of the highest quality. It is internationally recognised as a vehicle for the publication of theoretical and technological papers on the subjects allied to all aspects of coloration. Regular sections in the journal include reviews, original research and reports, feature articles, short communications and book reviews.