Acceleration of through-plane water removal in polymer electrolyte fuel cell by channel hydrophilization and electrode perforation

IF 5.4 Q2 CHEMISTRY, PHYSICAL Journal of Power Sources Advances Pub Date : 2022-08-01 DOI:10.1016/j.powera.2022.100102
Kosuke Nishida , Yudai Kono , Ryoichi Funaoka , Tatsuki Furukawa
{"title":"Acceleration of through-plane water removal in polymer electrolyte fuel cell by channel hydrophilization and electrode perforation","authors":"Kosuke Nishida ,&nbsp;Yudai Kono ,&nbsp;Ryoichi Funaoka ,&nbsp;Tatsuki Furukawa","doi":"10.1016/j.powera.2022.100102","DOIUrl":null,"url":null,"abstract":"<div><p>To alleviate water flooding in cathode electrodes of polymer electrolyte fuel cells (PEFCs), it is essential to design the optimum channel/electrode structure for rapid water removal. This study presented a novel hybrid structure with the channel hydrophilization and electrode perforation for accelerating the through-plane water discharge and demonstrated the effect of its structure on the water transports in the cathode channel and gas diffusion layer (GDL) of a working PEFC with optical and X-ray imaging. The results revealed that the hydrophilization of the channel walls encourages the through-plane water suction form the GDL to the channel. Furthermore, the electrode perforation promotes the in-plane water discharge from the fine porous media to the large penetration grooves and holes. The synergistic effect of these two water transports in the hybrid structure effectively alleviates the flooding in the porous layers and enhances the oxygen diffusibility, resulting in significant improvement of the cell performance.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"16 ","pages":"Article 100102"},"PeriodicalIF":5.4000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248522000208/pdfft?md5=5e118c01fed9a2bf192947514e4f937d&pid=1-s2.0-S2666248522000208-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248522000208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

To alleviate water flooding in cathode electrodes of polymer electrolyte fuel cells (PEFCs), it is essential to design the optimum channel/electrode structure for rapid water removal. This study presented a novel hybrid structure with the channel hydrophilization and electrode perforation for accelerating the through-plane water discharge and demonstrated the effect of its structure on the water transports in the cathode channel and gas diffusion layer (GDL) of a working PEFC with optical and X-ray imaging. The results revealed that the hydrophilization of the channel walls encourages the through-plane water suction form the GDL to the channel. Furthermore, the electrode perforation promotes the in-plane water discharge from the fine porous media to the large penetration grooves and holes. The synergistic effect of these two water transports in the hybrid structure effectively alleviates the flooding in the porous layers and enhances the oxygen diffusibility, resulting in significant improvement of the cell performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通道亲水性和电极穿孔加速聚合物电解质燃料电池的通平面除水
为了缓解聚合物电解质燃料电池(PEFCs)阴极的水淹现象,必须设计最佳的通道/电极结构以实现快速除水。本研究提出了一种具有通道亲水性和电极穿孔的新型混合结构,以加速通过平面的水排放,并通过光学和x射线成像证明了其结构对PEFC阴极通道和气体扩散层(GDL)中的水输送的影响。结果表明,通道壁面的亲水性促进了从GDL到通道的通平面吸水性。此外,电极穿孔促进了细孔介质的平面内水排放到大的渗透槽和孔中。在杂化结构中,这两种水输运的协同作用有效地缓解了多孔层中的水淹现象,增强了氧的扩散性,从而显著提高了电池的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
期刊最新文献
The effect of sidewall rupture on the propensity for thermal runaway propagation in a small lithium-ion battery module Synergetic effect of double-layer coating on silicon nanoparticles for high-performance lithium-ion battery anodes Formulating PEO-polycarbonate blends as solid polymer electrolytes by solvent-free extrusion Enhancing performance and sustainability of lithium manganese oxide cathodes with a poly(ionic liquid) binder and ionic liquid electrolyte Enhancing the stability of sodium-ion capacitors by introducing glyoxylic-acetal based electrolyte
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1