ON GENERIC COMPLEXITY OF THE ISOMORPHISM PROBLEM FOR FINITE SEMIGROUPS

IF 0.2 Q4 MATHEMATICS, APPLIED Prikladnaya Diskretnaya Matematika Pub Date : 2021-09-01 DOI:10.17223/20710410/51/6
A. Rybalov
{"title":"ON GENERIC COMPLEXITY OF THE ISOMORPHISM PROBLEM FOR FINITE SEMIGROUPS","authors":"A. Rybalov","doi":"10.17223/20710410/51/6","DOIUrl":null,"url":null,"abstract":"Generic-case approach to algorithmic problems was suggested by A. Miasnikov, V. Kapovich, P. Schupp, and V. Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. In this paper, we study the generic complexity of the isomorphism problem for finite semigroups. In this problem, for any two semigroups of the same order, given by their multiplication tables, it is required to determine whether they are isomorphic. V. Zemlyachenko, N. Korneenko, and R. Tyshkevich in 1982 proved that the graph isomorphism problem polynomially reduces to this problem. The graph isomorphism problem is a well-known algorithmic problem that has been actively studied since the 1970s, and for which polynomial algorithms are still unknown. So from a computational point of view the studied problem is no simpler than the graph isomorphism problem. We present a generic polynomial algorithm for the isomorphism problem of finite semigroups. It is based on the characterization of almost all finite semigroups as 3-nilpotent semigroups of a special form, established by D. Kleitman, B. Rothschild, and J. Spencer, as well as the Bollobas polynomial algorithm, which solves the isomorphism problem for almost all strongly sparse graphs.","PeriodicalId":42607,"journal":{"name":"Prikladnaya Diskretnaya Matematika","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prikladnaya Diskretnaya Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17223/20710410/51/6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Generic-case approach to algorithmic problems was suggested by A. Miasnikov, V. Kapovich, P. Schupp, and V. Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. In this paper, we study the generic complexity of the isomorphism problem for finite semigroups. In this problem, for any two semigroups of the same order, given by their multiplication tables, it is required to determine whether they are isomorphic. V. Zemlyachenko, N. Korneenko, and R. Tyshkevich in 1982 proved that the graph isomorphism problem polynomially reduces to this problem. The graph isomorphism problem is a well-known algorithmic problem that has been actively studied since the 1970s, and for which polynomial algorithms are still unknown. So from a computational point of view the studied problem is no simpler than the graph isomorphism problem. We present a generic polynomial algorithm for the isomorphism problem of finite semigroups. It is based on the characterization of almost all finite semigroups as 3-nilpotent semigroups of a special form, established by D. Kleitman, B. Rothschild, and J. Spencer, as well as the Bollobas polynomial algorithm, which solves the isomorphism problem for almost all strongly sparse graphs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有限半群同构问题的一般复杂性
A.Miasnikov、V.Kapovich、P.Schupp和V.Shpillain在2003年提出了算法问题的一般案例方法。这种方法研究算法在典型(几乎所有)输入上的行为,而忽略其余输入。本文研究了有限半群同构问题的一般复杂性。在这个问题中,对于任意两个相同阶的半群,由它们的乘法表给出,需要确定它们是否同构。V.Zemlyachenko、N.Korneenko和R.Tyshkevich在1982年证明了图同构问题多项式化为这个问题。图同构问题是一个著名的算法问题,自20世纪70年代以来一直在积极研究,其多项式算法仍然未知。因此,从计算的角度来看,所研究的问题并不比图同构问题简单。针对有限半群的同构问题,我们提出了一个通用的多项式算法。它基于D.Kleitman、B.Rothschild和J.Spencer建立的几乎所有有限半群都是特殊形式的3-幂零半群的特征,以及Bollobas多项式算法,该算法解决了几乎所有强稀疏图的同构问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Prikladnaya Diskretnaya Matematika
Prikladnaya Diskretnaya Matematika MATHEMATICS, APPLIED-
CiteScore
0.60
自引率
50.00%
发文量
0
期刊介绍: The scientific journal Prikladnaya Diskretnaya Matematika has been issued since 2008. It was registered by Federal Control Service in the Sphere of Communications and Mass Media (Registration Witness PI № FS 77-33762 in October 16th, in 2008). Prikladnaya Diskretnaya Matematika has been selected for coverage in Clarivate Analytics products and services. It is indexed and abstracted in SCOPUS and WoS Core Collection (Emerging Sources Citation Index). The journal is a quarterly. All the papers to be published in it are obligatorily verified by one or two specialists. The publication in the journal is free of charge and may be in Russian or in English. The topics of the journal are the following: 1.theoretical foundations of applied discrete mathematics – algebraic structures, discrete functions, combinatorial analysis, number theory, mathematical logic, information theory, systems of equations over finite fields and rings; 2.mathematical methods in cryptography – synthesis of cryptosystems, methods for cryptanalysis, pseudorandom generators, appreciation of cryptosystem security, cryptographic protocols, mathematical methods in quantum cryptography; 3.mathematical methods in steganography – synthesis of steganosystems, methods for steganoanalysis, appreciation of steganosystem security; 4.mathematical foundations of computer security – mathematical models for computer system security, mathematical methods for the analysis of the computer system security, mathematical methods for the synthesis of protected computer systems;[...]
期刊最新文献
Analysis of minimal distance of AG-code associated with maximal curve of genus three The generic complexity of the graph triangulation problem Application of idempotent algebra methods in genetic algorithm for solving the scheduling problem About the rate of normal approximation for the distribution of the number of repetitions in a stationary discrete random sequence On ideal class group computation of imaginary multiquadratic fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1