Study on the mechanism of furfural to maleic acid oxidized by hydrogen peroxide in formic acid solution

IF 2.4 Q3 Computer Science Journal of Theoretical & Computational Chemistry Pub Date : 2020-08-01 DOI:10.1142/s0219633620500194
Aiyun Hu, Xinzhi Wang, Xiang Wang, Qingrui Peng, Haijun Wang
{"title":"Study on the mechanism of furfural to maleic acid oxidized by hydrogen peroxide in formic acid solution","authors":"Aiyun Hu, Xinzhi Wang, Xiang Wang, Qingrui Peng, Haijun Wang","doi":"10.1142/s0219633620500194","DOIUrl":null,"url":null,"abstract":"Although the conversion of furfural to formic acid oxidized by H2O2 in formic acid is very high, the molecular mechanism remains unknown. This work describes the entire reaction process of the condensation reaction based on the density functional theory (DFT). It is found that H acts as a shuttle throughout most of the basic reaction steps during this transformation. Besides, Baeyer–Villiger oxidation and Baeyer–Villiger rearrangement are also discovered during this process with the opening of furan ring following afterward. The reactants, products and intermediates in the reaction process are optimized; all possible reaction paths are considered as well as the energy barriers to be overcome at each step. Thermochemical data concerned with the conversion of furfural to maleic acid showed that the maximum energy barrier at 378.15[Formula: see text]K was 39.83[Formula: see text]kcal/mol. The results of this study do not only correspond with the existing conclusions about the reaction in question from previous research but also supplement to the study of the pathways and mechanisms of the reaction, which can provide reference and guidance for further research, both experimentally and theoretically.","PeriodicalId":49976,"journal":{"name":"Journal of Theoretical & Computational Chemistry","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0219633620500194","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical & Computational Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219633620500194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

Abstract

Although the conversion of furfural to formic acid oxidized by H2O2 in formic acid is very high, the molecular mechanism remains unknown. This work describes the entire reaction process of the condensation reaction based on the density functional theory (DFT). It is found that H acts as a shuttle throughout most of the basic reaction steps during this transformation. Besides, Baeyer–Villiger oxidation and Baeyer–Villiger rearrangement are also discovered during this process with the opening of furan ring following afterward. The reactants, products and intermediates in the reaction process are optimized; all possible reaction paths are considered as well as the energy barriers to be overcome at each step. Thermochemical data concerned with the conversion of furfural to maleic acid showed that the maximum energy barrier at 378.15[Formula: see text]K was 39.83[Formula: see text]kcal/mol. The results of this study do not only correspond with the existing conclusions about the reaction in question from previous research but also supplement to the study of the pathways and mechanisms of the reaction, which can provide reference and guidance for further research, both experimentally and theoretically.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甲酸溶液中过氧化氢氧化糠醛制马来酸的机理研究
尽管糠醛在甲酸中被H2O2氧化为甲酸的转化率很高,但其分子机制仍然未知。本工作基于密度泛函理论(DFT)描述了缩合反应的整个反应过程。研究发现,在这种转化过程中,H在大多数基本反应步骤中都起着穿梭机的作用。此外,在此过程中还发现了Baeyer–Villiger氧化和Baeyer-Villiger重排,随后呋喃环打开。对反应过程中的反应物、产物和中间体进行了优化;考虑了所有可能的反应路径以及在每个步骤中要克服的能量障碍。与糠醛转化为马来酸有关的热化学数据显示,378.15[公式:见正文]K的最大能垒为39.83[公式:参见正文]kcal/mol。这项研究的结果不仅与以往研究中关于该反应的现有结论相一致,而且对该反应的途径和机制的研究起到了补充作用,可以为进一步的实验和理论研究提供参考和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
3 months
期刊介绍: The Journal of Theoretical and Computational Chemistry (JTCC) is an international interdisciplinary journal aimed at providing comprehensive coverage on the latest developments and applications of research in the ever-expanding field of theoretical and computational chemistry. JTCC publishes regular articles and reviews on new methodology, software, web server and database developments. The applications of existing theoretical and computational methods which produce significant new insights into important problems are also welcomed. Papers reporting joint computational and experimental investigations are encouraged. The journal will not consider manuscripts reporting straightforward calculations of the properties of molecules with existing software packages without addressing a significant scientific problem. Areas covered by the journal include molecular dynamics, computer-aided molecular design, modeling effects of mutation on stability and dynamics of macromolecules, quantum mechanics, statistical mechanics and other related topics.
期刊最新文献
A TD-DFT Study for the Excited State Calculations of Microhydration of N-Acetyl-Phenylalaninylamide (NAPA) Design of New Thiadiazole Derivatives with Improved Antidiabetic Activity Designing Artemisinins with Antimalarial Potential, Combining Molecular Electrostatic Potential, Ligand-Heme Interaction and Multivariate Models In Silico Docking of Rhodanine Derivatives and 3D-QSAR Study to Identify Potent Prostate Cancer Inhibitors Mechanism of Degradation of Rice Starch Amylopectin by Oryzenin Using ONIOM Quantum Calculations [DFT/B3LYP/6-31+G(D, P): AM1]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1