Aiyun Hu, Xinzhi Wang, Xiang Wang, Qingrui Peng, Haijun Wang
{"title":"Study on the mechanism of furfural to maleic acid oxidized by hydrogen peroxide in formic acid solution","authors":"Aiyun Hu, Xinzhi Wang, Xiang Wang, Qingrui Peng, Haijun Wang","doi":"10.1142/s0219633620500194","DOIUrl":null,"url":null,"abstract":"Although the conversion of furfural to formic acid oxidized by H2O2 in formic acid is very high, the molecular mechanism remains unknown. This work describes the entire reaction process of the condensation reaction based on the density functional theory (DFT). It is found that H acts as a shuttle throughout most of the basic reaction steps during this transformation. Besides, Baeyer–Villiger oxidation and Baeyer–Villiger rearrangement are also discovered during this process with the opening of furan ring following afterward. The reactants, products and intermediates in the reaction process are optimized; all possible reaction paths are considered as well as the energy barriers to be overcome at each step. Thermochemical data concerned with the conversion of furfural to maleic acid showed that the maximum energy barrier at 378.15[Formula: see text]K was 39.83[Formula: see text]kcal/mol. The results of this study do not only correspond with the existing conclusions about the reaction in question from previous research but also supplement to the study of the pathways and mechanisms of the reaction, which can provide reference and guidance for further research, both experimentally and theoretically.","PeriodicalId":49976,"journal":{"name":"Journal of Theoretical & Computational Chemistry","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0219633620500194","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical & Computational Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219633620500194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2
Abstract
Although the conversion of furfural to formic acid oxidized by H2O2 in formic acid is very high, the molecular mechanism remains unknown. This work describes the entire reaction process of the condensation reaction based on the density functional theory (DFT). It is found that H acts as a shuttle throughout most of the basic reaction steps during this transformation. Besides, Baeyer–Villiger oxidation and Baeyer–Villiger rearrangement are also discovered during this process with the opening of furan ring following afterward. The reactants, products and intermediates in the reaction process are optimized; all possible reaction paths are considered as well as the energy barriers to be overcome at each step. Thermochemical data concerned with the conversion of furfural to maleic acid showed that the maximum energy barrier at 378.15[Formula: see text]K was 39.83[Formula: see text]kcal/mol. The results of this study do not only correspond with the existing conclusions about the reaction in question from previous research but also supplement to the study of the pathways and mechanisms of the reaction, which can provide reference and guidance for further research, both experimentally and theoretically.
期刊介绍:
The Journal of Theoretical and Computational Chemistry (JTCC) is an international interdisciplinary journal aimed at providing comprehensive coverage on the latest developments and applications of research in the ever-expanding field of theoretical and computational chemistry.
JTCC publishes regular articles and reviews on new methodology, software, web server and database developments. The applications of existing theoretical and computational methods which produce significant new insights into important problems are also welcomed. Papers reporting joint computational and experimental investigations are encouraged. The journal will not consider manuscripts reporting straightforward calculations of the properties of molecules with existing software packages without addressing a significant scientific problem.
Areas covered by the journal include molecular dynamics, computer-aided molecular design, modeling effects of mutation on stability and dynamics of macromolecules, quantum mechanics, statistical mechanics and other related topics.