Comparison of support vector machine and backpropagation models in forecasting the number of foreign tourists in Bali province

Imelda Alvionita Tarigan, I. P. Bayupati, G. A. A. Putri
{"title":"Comparison of support vector machine and backpropagation models in forecasting the number of foreign tourists in Bali province","authors":"Imelda Alvionita Tarigan, I. P. Bayupati, G. A. A. Putri","doi":"10.14710/JTSISKOM.2021.13847","DOIUrl":null,"url":null,"abstract":"Tourism in Bali is one of the major industries which play an important role in developing the global economy in Indonesia. Good forecasting of tourist arrival, especially from foreign countries, is needed to predict the number of tourists based on past information to minimize the prediction error rate. This study compares the performance of SVM and Backpropagation to find the model with the best prediction algorithm using data from foreign tourists in Bali Province. The results of this study recommend the best forecasting using the SVM model with the radial kernel function. The best accuracy of the SVM model obtained the lowest error values of MSE 0.0009, MAE 0.0186, and MAPE 0.0276, compared to Backpropagation which obtained MSE 0.0170, MAE 0.1066, and MAPE 0.1539.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.2021.13847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Tourism in Bali is one of the major industries which play an important role in developing the global economy in Indonesia. Good forecasting of tourist arrival, especially from foreign countries, is needed to predict the number of tourists based on past information to minimize the prediction error rate. This study compares the performance of SVM and Backpropagation to find the model with the best prediction algorithm using data from foreign tourists in Bali Province. The results of this study recommend the best forecasting using the SVM model with the radial kernel function. The best accuracy of the SVM model obtained the lowest error values of MSE 0.0009, MAE 0.0186, and MAPE 0.0276, compared to Backpropagation which obtained MSE 0.0170, MAE 0.1066, and MAPE 0.1539.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持向量机与反向传播模型在巴厘岛外国游客数量预测中的比较
巴厘岛的旅游业是印尼发展全球经济的重要产业之一。需要对游客,特别是外国游客的到来进行良好的预测,根据过去的信息预测游客的数量,以尽量减少预测错误率。本研究利用巴厘岛省的外国游客数据,比较支持向量机和反向传播的性能,寻找具有最佳预测算法的模型。研究结果表明,径向核函数支持向量机模型的预测效果最好。与反向传播模型的误差值(MSE 0.0170, MAE 0.1066, MAPE 0.1539)相比,SVM模型的精度最高,误差值为MSE 0.0009, MAE 0.0186, MAPE 0.0276。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
期刊最新文献
TATOPSIS: A decision support system for selecting a major in university with a two-way approach and TOPSIS Regional clustering based on economic potential with a modified fuzzy k-prototypes algorithm for village developing target determination River water level measurement system using Sobel edge detection method Classification of beneficiaries for the rehabilitation of uninhabitable houses using the K-Nearest Neighbor algorithm Sequence-based prediction of protein-protein interaction using autocorrelation features and machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1