The New Exponentiated Half Logistic-Harris-G Family of Distributions with Actuarial Measures and Applications

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Stats Pub Date : 2023-07-31 DOI:10.3390/stats6030050
Gayan Warahena-Liyanage, B. Oluyede, Thatayaone Moakofi, Whatmore Sengweni
{"title":"The New Exponentiated Half Logistic-Harris-G Family of Distributions with Actuarial Measures and Applications","authors":"Gayan Warahena-Liyanage, B. Oluyede, Thatayaone Moakofi, Whatmore Sengweni","doi":"10.3390/stats6030050","DOIUrl":null,"url":null,"abstract":"In this study, we introduce a new generalized family of distributions called the Exponentiated Half Logistic-Harris-G (EHL-Harris-G) distribution, which extends the Harris-G distribution. The motivation for introducing this generalized family of distributions lies in its ability to overcome the limitations of previous families, enhance flexibility, improve tail behavior, provide better statistical properties and find applications in several fields. Several statistical properties, including hazard rate function, quantile function, moments, moments of residual life, distribution of the order statistics and Rényi entropy are discussed. Risk measures, such as value at risk, tail value at risk, tail variance and tail variance premium, are also derived and studied. To estimate the parameters of the EHL-Harris-G family of distributions, the following six different estimation approaches are used: maximum likelihood (MLE), least-squares (LS), weighted least-squares (WLS), maximum product spacing (MPS), Cramér–von Mises (CVM), and Anderson–Darling (AD). The Monte Carlo simulation results for EHL-Harris-Weibull (EHL-Harris-W) show that the MLE method allows us to obtain better estimates, followed by WLS and then AD. Finally, we show that the EHL-Harris-W distribution is superior to some other equi-parameter non-nested models in the literature, by fitting it to two real-life data sets from different disciplines.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6030050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we introduce a new generalized family of distributions called the Exponentiated Half Logistic-Harris-G (EHL-Harris-G) distribution, which extends the Harris-G distribution. The motivation for introducing this generalized family of distributions lies in its ability to overcome the limitations of previous families, enhance flexibility, improve tail behavior, provide better statistical properties and find applications in several fields. Several statistical properties, including hazard rate function, quantile function, moments, moments of residual life, distribution of the order statistics and Rényi entropy are discussed. Risk measures, such as value at risk, tail value at risk, tail variance and tail variance premium, are also derived and studied. To estimate the parameters of the EHL-Harris-G family of distributions, the following six different estimation approaches are used: maximum likelihood (MLE), least-squares (LS), weighted least-squares (WLS), maximum product spacing (MPS), Cramér–von Mises (CVM), and Anderson–Darling (AD). The Monte Carlo simulation results for EHL-Harris-Weibull (EHL-Harris-W) show that the MLE method allows us to obtain better estimates, followed by WLS and then AD. Finally, we show that the EHL-Harris-W distribution is superior to some other equi-parameter non-nested models in the literature, by fitting it to two real-life data sets from different disciplines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新的具有精算测度的指数半Logistic-Harris-G分布族及其应用
在本研究中,我们引入了一种新的广义分布族,称为指数半Logistic-Harris-G (EHL-Harris-G)分布,它扩展了Harris-G分布。引入这种广义分布族的动机在于它能够克服以前分布族的局限性,增强灵活性,改善尾部行为,提供更好的统计特性,并在多个领域找到应用。讨论了几种统计性质,包括危险率函数、分位数函数、矩、剩余寿命矩、序统计量分布和rsamnyi熵。推导并研究了风险值、风险尾值、尾部方差和尾部方差溢价等风险度量。为了估计EHL-Harris-G族分布的参数,使用了以下六种不同的估计方法:最大似然(MLE)、最小二乘(LS)、加权最小二乘(WLS)、最大产品间距(MPS)、cram von Mises (CVM)和Anderson-Darling (AD)。EHL-Harris-Weibull (EHL-Harris-W)的蒙特卡罗模拟结果表明,MLE方法可以让我们获得更好的估计,其次是WLS,然后是AD。最后,通过将EHL-Harris-W分布拟合到来自不同学科的两个真实数据集,我们表明EHL-Harris-W分布优于文献中其他一些等参数非嵌套模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Investigating Risk Factors for Racial Disparity in E-Cigarette Use with PATH Study. Precise Tensor Product Smoothing via Spectral Splines Predicting Random Walks and a Data-Splitting Prediction Region The Mediating Impact of Innovation Types in the Relationship between Innovation Use Theory and Market Performance Jump-Robust Realized-GARCH-MIDAS-X Estimators for Bitcoin and Ethereum Volatility Indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1