Parkin-dependent mitophagy occurs via proteasome-dependent steps sequentially targeting separate mitochondrial sub-compartments for autophagy.

Autophagy reports Pub Date : 2022-12-19 eCollection Date: 2022-01-01 DOI:10.1080/27694127.2022.2143214
Anna Lechado-Terradas, Sandra Schepers, Katharina I Zittlau, Karan Sharma, Orkun Ok, Julia C Fitzgerald, Stefan Geimer, Benedikt Westermann, Boris Macek, Philipp J Kahle
{"title":"Parkin-dependent mitophagy occurs via proteasome-dependent steps sequentially targeting separate mitochondrial sub-compartments for autophagy.","authors":"Anna Lechado-Terradas, Sandra Schepers, Katharina I Zittlau, Karan Sharma, Orkun Ok, Julia C Fitzgerald, Stefan Geimer, Benedikt Westermann, Boris Macek, Philipp J Kahle","doi":"10.1080/27694127.2022.2143214","DOIUrl":null,"url":null,"abstract":"<p><p>PINK1/parkin-dependent mitophagy initially involves (phospho)ubiquitin-directed proteasome-dependent degradation of certain outer mitochondrial membrane (OMM) proteins (e.g. mitofusins) and the recruitment of autophagy adaptors to a group of ubiquitinated OMM proteins, eventually leading to autophagic removal of damaged mitochondria in stressed cells. Here we provide evidence that mitochondrial degradation occurs via stepwise delivery of separate mitochondrial sub-compartments for autophagic degradation. OMM and inner mitochondrial material appears to become separately isolated for autophagolysosomal degradation, not only in parkin-overexpressing HeLa cells but also in cells that express endogenous parkin (human embryonic kidney cells and neural progenitor cells) with slower mitophagy kinetics. The remaining inner mitochondrial material becomes degraded only after much prolonged membrane depolarization, potentially involving another proteasome-sensitive step. The present combined microscopy and proteomics analyses support the idea that cell stress-induced parkin-dependent mitophagy is a complex multi-step process with distinct mitochondrial sub-compartments being separately targeted for autophagic degradation. <b>Abbreviations:</b> BafA, Bafilomycin A; CCCP, carbonyl cyanide 3-chlorophenylhydrazone; COX IV, cytochrome c oxidase subunit IV; CS, citrate synthase; DMEM, Dulbecco's modified Eagle's medium; EGFP, enhanced green fluorescent protein; FBS, fetal bovine serum; IF, immunofluorescence; IMM, inner mitochondrial membrane; KO, knock-out; LC3, microtubule-associated protein 1 light chain 3; MDVs, mitochondria-derived vesicles; MFN, mitofusin; NPCs, neural progenitor cells; OMM, outer mitochondrial membrane; p62/SQSTM, 62kDa protein sequestosome-1; PBS, phosphate-buffered saline; PINK1, phosphatase and tensin homolog (PTEN)-induced putative kinase protein 1; RT, room temperature; SSBP1, single-stranded DNA binding protein 1; TAX1BP1, Tax1-binding protein 1; TEM, transmission electron microscopy, TOM20, translocase of outer mitochondrial membrane 20kDa subunit; TOM70, translocase of outer mitochondrial membrane 70kDa subunit; Ub, ubiquitin; UPS, ubiquitin proteasome system; VDAC, voltage-dependent anion-selective channel protein; WB, Western blot; WT, wild-type.</p>","PeriodicalId":72341,"journal":{"name":"Autophagy reports","volume":" ","pages":"576-602"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864704/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/27694127.2022.2143214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

PINK1/parkin-dependent mitophagy initially involves (phospho)ubiquitin-directed proteasome-dependent degradation of certain outer mitochondrial membrane (OMM) proteins (e.g. mitofusins) and the recruitment of autophagy adaptors to a group of ubiquitinated OMM proteins, eventually leading to autophagic removal of damaged mitochondria in stressed cells. Here we provide evidence that mitochondrial degradation occurs via stepwise delivery of separate mitochondrial sub-compartments for autophagic degradation. OMM and inner mitochondrial material appears to become separately isolated for autophagolysosomal degradation, not only in parkin-overexpressing HeLa cells but also in cells that express endogenous parkin (human embryonic kidney cells and neural progenitor cells) with slower mitophagy kinetics. The remaining inner mitochondrial material becomes degraded only after much prolonged membrane depolarization, potentially involving another proteasome-sensitive step. The present combined microscopy and proteomics analyses support the idea that cell stress-induced parkin-dependent mitophagy is a complex multi-step process with distinct mitochondrial sub-compartments being separately targeted for autophagic degradation. Abbreviations: BafA, Bafilomycin A; CCCP, carbonyl cyanide 3-chlorophenylhydrazone; COX IV, cytochrome c oxidase subunit IV; CS, citrate synthase; DMEM, Dulbecco's modified Eagle's medium; EGFP, enhanced green fluorescent protein; FBS, fetal bovine serum; IF, immunofluorescence; IMM, inner mitochondrial membrane; KO, knock-out; LC3, microtubule-associated protein 1 light chain 3; MDVs, mitochondria-derived vesicles; MFN, mitofusin; NPCs, neural progenitor cells; OMM, outer mitochondrial membrane; p62/SQSTM, 62kDa protein sequestosome-1; PBS, phosphate-buffered saline; PINK1, phosphatase and tensin homolog (PTEN)-induced putative kinase protein 1; RT, room temperature; SSBP1, single-stranded DNA binding protein 1; TAX1BP1, Tax1-binding protein 1; TEM, transmission electron microscopy, TOM20, translocase of outer mitochondrial membrane 20kDa subunit; TOM70, translocase of outer mitochondrial membrane 70kDa subunit; Ub, ubiquitin; UPS, ubiquitin proteasome system; VDAC, voltage-dependent anion-selective channel protein; WB, Western blot; WT, wild-type.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
帕金森依赖性线粒体自噬通过蛋白酶体依赖性步骤依次靶向单独的线粒体亚室进行自噬
PINK1/parkin依赖的线粒体自噬最初涉及(磷酸化)泛素导向的蛋白酶体依赖的某些线粒体外膜(OMM)蛋白(如有丝分裂蛋白)的降解和自噬适配子对一组泛素化的OMM蛋白的招募,最终导致应激细胞中受损线粒体的自噬去除。在这里,我们提供的证据表明,线粒体降解是通过逐步递送单独的线粒体亚室进行自噬降解发生的。OMM和线粒体内部物质似乎在自噬溶酶体降解中被单独分离,不仅在过表达parkin的HeLa细胞中,而且在表达内源性parkin的细胞(人胚胎肾细胞和神经祖细胞)中,线粒体自噬动力学较慢。剩余的线粒体内部物质只有在长时间的膜去极化后才会降解,这可能涉及另一个蛋白酶体敏感的步骤。目前结合显微镜和蛋白质组学分析支持细胞应激诱导的帕金森依赖性线粒体自噬是一个复杂的多步骤过程,不同的线粒体亚室分别针对自噬降解。缩写:BafA,巴菲霉素A;CCCP,羰基氰化物3-氯苯腙;COX IV,细胞色素c氧化酶亚基IV;CS:柠檬酸合酶;DMEM, Dulbecco改良的Eagle培养基;增强型绿色荧光蛋白;胎牛血清;如果,免疫荧光;IMM,线粒体内膜;KO,淘汰赛;LC3,微管相关蛋白1轻链3;线粒体源性囊泡;最惠国,mitofusin;npc,神经祖细胞;OMM,线粒体外膜;p62/SQSTM, 62kDa蛋白序列体-1;PBS,磷酸盐缓冲盐水;PINK1,磷酸酶和紧张素同源物(PTEN)诱导的推定激酶蛋白1;RT,室温;SSBP1,单链DNA结合蛋白1;TAX1BP1, tax1结合蛋白1;TEM,透射电镜,TOM20,线粒体外膜转位酶20kDa亚基;TOM70,线粒体外膜转位酶70kDa亚基;乌兰巴托,泛素;UPS,泛素蛋白酶体系统;电压依赖性阴离子选择通道蛋白;WB, Western blot;WT,野生型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TFEB-mediated autophagy stimulation as an anabolic strategy for bone: insights from TFEB activation in the osteoblast lineage. Involvement of ACSL3 in the formation of autophagosomes and lipid droplets during starvation conditions. Autophagy cargo profiles in skeletal muscle during starvation and exercise. Illuminating the regulatory link between blue light and autophagy in photomorphogenesis. Deacetylation of HSC70 by SIRT2 promotes chaperone mediated autophagy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1