{"title":"Seismic behavior of a two-level control system with double vertical shear links in series","authors":"Mohsen Zare Golmoghany, S. M. Zahrai","doi":"10.12989/SSS.2021.27.3.467","DOIUrl":null,"url":null,"abstract":"To improve seismic behavior of structures, a two-level control system is proposed in this paper where by combining two vertical shear panels in series in a chevron bracing configuration, Double-Vertical Shear Panel, D-VSP is introduced. Utilizing two-levels of energy absorption for two different earthquake intensity levels, D-VSP is expected to beneficially change dynamic behavior parameters like strength, stiffness and damping ratio through increasing ductility. To validate research, a VSP is modeled in ABAQUS and related numerical results are compared to those of a previous experimental work. Pushover, quasistatic cyclic and seismic analyses are conducted on two models. The hysteresis curves show symmetric two-level behavior with stable strength and stiffness leading to increase ductility ratio up to 29.4%. Maximum displacement and maximum base shear under seismic loading decrease 5.91 and 11.18% respectively under moderate earthquakes when D-VSP system uses only first fuse, saving second fuse for severe earthquakes. However, in a strong earthquake, both of the shear panels absorb seismic energy and can control vibration better than conventional systems with one level control mechanism. The proposed system using a weaker panel can better control an extensive range of earthquakes as well as the earthquake with foreshocks.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SSS.2021.27.3.467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
To improve seismic behavior of structures, a two-level control system is proposed in this paper where by combining two vertical shear panels in series in a chevron bracing configuration, Double-Vertical Shear Panel, D-VSP is introduced. Utilizing two-levels of energy absorption for two different earthquake intensity levels, D-VSP is expected to beneficially change dynamic behavior parameters like strength, stiffness and damping ratio through increasing ductility. To validate research, a VSP is modeled in ABAQUS and related numerical results are compared to those of a previous experimental work. Pushover, quasistatic cyclic and seismic analyses are conducted on two models. The hysteresis curves show symmetric two-level behavior with stable strength and stiffness leading to increase ductility ratio up to 29.4%. Maximum displacement and maximum base shear under seismic loading decrease 5.91 and 11.18% respectively under moderate earthquakes when D-VSP system uses only first fuse, saving second fuse for severe earthquakes. However, in a strong earthquake, both of the shear panels absorb seismic energy and can control vibration better than conventional systems with one level control mechanism. The proposed system using a weaker panel can better control an extensive range of earthquakes as well as the earthquake with foreshocks.