Health Assessment of a Pedestrian Bridge Deck using Ground Penetrating Radar

IF 0.8 Q4 ENGINEERING, CIVIL Electronic Journal of Structural Engineering Pub Date : 2018-01-01 DOI:10.56748/ejse.182261
S. Miramini, M. Sofi, A. Aseem, A. Baluwala, L. Zhang, P. Mendis, C. Duffield
{"title":"Health Assessment of a Pedestrian Bridge Deck using Ground Penetrating Radar","authors":"S. Miramini, M. Sofi, A. Aseem, A. Baluwala, L. Zhang, P. Mendis, C. Duffield","doi":"10.56748/ejse.182261","DOIUrl":null,"url":null,"abstract":"Scanning concrete structures using ground penetrating radars (GPR) continues to be one of the most efficient methods for defect (i.e. crack, void and delamination) detection within concrete structures as well as detection of reinforcing bars damage due to corrosion. The aim of this study was to assess the structural health of a 45-year old pedestrian bridge deck. To achieve this, a number of experiments using a GPR system were conducted on a strong concrete floor with known construction drawings to detect cover depth and rebar orientations. After validating the GPR results through the experiments, the GPR system was used for nondestructive assessment of the pedestrian bridge deck. From the scanned results, the location and orientation of the reinforcing bar were established. In addition, the diameters of the bars was estimated by measuring the thickness of the hyperbola curves in the B-scans. The scanned output shows no signs of corrosion of reinforcement or damage of concrete in the form of delamination or cracking.","PeriodicalId":52513,"journal":{"name":"Electronic Journal of Structural Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56748/ejse.182261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 5

Abstract

Scanning concrete structures using ground penetrating radars (GPR) continues to be one of the most efficient methods for defect (i.e. crack, void and delamination) detection within concrete structures as well as detection of reinforcing bars damage due to corrosion. The aim of this study was to assess the structural health of a 45-year old pedestrian bridge deck. To achieve this, a number of experiments using a GPR system were conducted on a strong concrete floor with known construction drawings to detect cover depth and rebar orientations. After validating the GPR results through the experiments, the GPR system was used for nondestructive assessment of the pedestrian bridge deck. From the scanned results, the location and orientation of the reinforcing bar were established. In addition, the diameters of the bars was estimated by measuring the thickness of the hyperbola curves in the B-scans. The scanned output shows no signs of corrosion of reinforcement or damage of concrete in the form of delamination or cracking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于探地雷达的人行天桥桥面健康评估
使用探地雷达(GPR)扫描混凝土结构仍然是检测混凝土结构内部缺陷(即裂缝、空洞和分层)以及检测钢筋腐蚀损伤的最有效方法之一。本研究的目的是评估一座45年历史的人行天桥的结构健康状况。为了实现这一目标,在已知施工图的坚固混凝土地板上进行了一系列使用GPR系统的实验,以检测覆盖深度和钢筋方向。通过实验验证探地雷达检测结果后,将探地雷达检测系统用于人行桥面无损检测。根据扫描结果确定了钢筋的位置和方向。此外,通过测量b -扫描双曲线的厚度来估计棒状结构的直径。扫描输出显示没有钢筋腐蚀的迹象,也没有分层或开裂形式的混凝土损坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electronic Journal of Structural Engineering
Electronic Journal of Structural Engineering Engineering-Civil and Structural Engineering
CiteScore
1.10
自引率
16.70%
发文量
0
期刊介绍: The Electronic Journal of Structural Engineering (EJSE) is an international forum for the dissemination and discussion of leading edge research and practical applications in Structural Engineering. It comprises peer-reviewed technical papers, discussions and comments, and also news about conferences, workshops etc. in Structural Engineering. Original papers are invited from individuals involved in the field of structural engineering and construction. The areas of special interests include the following, but are not limited to: Analytical and design methods Bridges and High-rise Buildings Case studies and failure investigation Innovations in design and new technology New Construction Materials Performance of Structures Prefabrication Technology Repairs, Strengthening, and Maintenance Stability and Scaffolding Engineering Soil-structure interaction Standards and Codes of Practice Structural and solid mechanics Structural Safety and Reliability Testing Technologies Vibration, impact and structural dynamics Wind and earthquake engineering. EJSE is seeking original papers (research or state-of the art reviews) of the highest quality for consideration for publication. The papers will be published within 3 to 6 months. The papers are expected to make a significant contribution to the research and development activities of the academic and professional engineering community.
期刊最新文献
Evaluation of the dynamic additional impact about foundation pit construction on the existing adjacent subway station with the PBA method Seismic Assessment of High-Rise Buildings Having Transfer Elements Ultra-High-Performance Concrete (UHPC): A state-of-the-art review of material behavior, structural applications and future Assessment of uncertainties in damping reduction factors using ANN for acceleration, velocity and displacement spectra Effects of Structural Bracing on the Progressive Collapse Occurrence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1