Temperature mapping model of cables considering the coupling of electromagnetic and thermal field

X. Hua, Li Wang, Shanshui Yang, Shaojie Zhang
{"title":"Temperature mapping model of cables considering the coupling of electromagnetic and thermal field","authors":"X. Hua, Li Wang, Shanshui Yang, Shaojie Zhang","doi":"10.12688/digitaltwin.17718.1","DOIUrl":null,"url":null,"abstract":"Background: During cable operation, its internal temperature reflects the actual working condition of the cable. Once overload occurs, its conductor temperature will rise rapidly. Under high temperature conditions, the insulation material is very prone to breakdown accidents, which seriously threatens the safety of the power system. Methods: To reflect the actual operating condition of cables with high fidelity, a cable temperature mapping model is proposed with the coupling of electromagnetic and thermal field taken into consideration. Firstly, a finite element model is formulated based on the cable structure and material parameters. Secondly, the coupling between electromagnetic and thermal field is analyzed, and multiple coupling calculations are performed iteratively according to the operating conditions. Finally, the mapping between temperature and current flowing through the cable is established to accurately reflect the variation of cable’s internal temperature under different operating conditions. The cable surface temperatures under five operating conditions are measured online and compared with the calculated results of the temperature mapping model. Results: The absolute error between the calculated value of the model and the actual measured value is 0.88°C and the relative error is 1.46%. Conclusions: The temperature mapping model developed in this paper can accurately calculate the internal temperature of the cable and forms an important part of the digital twin model of the cable.","PeriodicalId":29831,"journal":{"name":"Digital Twin","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Twin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/digitaltwin.17718.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: During cable operation, its internal temperature reflects the actual working condition of the cable. Once overload occurs, its conductor temperature will rise rapidly. Under high temperature conditions, the insulation material is very prone to breakdown accidents, which seriously threatens the safety of the power system. Methods: To reflect the actual operating condition of cables with high fidelity, a cable temperature mapping model is proposed with the coupling of electromagnetic and thermal field taken into consideration. Firstly, a finite element model is formulated based on the cable structure and material parameters. Secondly, the coupling between electromagnetic and thermal field is analyzed, and multiple coupling calculations are performed iteratively according to the operating conditions. Finally, the mapping between temperature and current flowing through the cable is established to accurately reflect the variation of cable’s internal temperature under different operating conditions. The cable surface temperatures under five operating conditions are measured online and compared with the calculated results of the temperature mapping model. Results: The absolute error between the calculated value of the model and the actual measured value is 0.88°C and the relative error is 1.46%. Conclusions: The temperature mapping model developed in this paper can accurately calculate the internal temperature of the cable and forms an important part of the digital twin model of the cable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑电磁场和热场耦合的电缆温度映射模型
背景:在电缆运行过程中,其内部温度反映了电缆的实际工作状态。一旦发生过载,其导体温度将迅速上升。在高温条件下,绝缘材料极易发生击穿事故,严重威胁着电力系统的安全。方法:为了高保真地反映电缆的实际工作状态,提出了考虑电磁场和热场耦合的电缆温度映射模型。首先,根据索的结构和材料参数,建立了索的有限元模型。其次,分析了电磁场与热场的耦合关系,并根据工况进行了多次耦合迭代计算;最后,建立温度与流经电缆电流的映射关系,准确反映不同工况下电缆内部温度的变化。在线测量了五种工况下的电缆表面温度,并与温度映射模型的计算结果进行了比较。结果:模型计算值与实际实测值的绝对误差为0.88℃,相对误差为1.46%。结论:本文建立的温度映射模型能够准确计算电缆内部温度,是电缆数字孪生模型的重要组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Digital Twin
Digital Twin digital twin technologies-
自引率
0.00%
发文量
0
期刊介绍: Digital Twin is a rapid multidisciplinary open access publishing platform for state-of-the-art, basic, scientific and applied research on digital twin technologies. Digital Twin covers all areas related digital twin technologies, including broad fields such as smart manufacturing, civil and industrial engineering, healthcare, agriculture, and many others. The platform is open to submissions from researchers, practitioners and experts, and all articles will benefit from open peer review.  The aim of Digital Twin is to advance the state-of-the-art in digital twin research and encourage innovation by highlighting efficient, robust and sustainable multidisciplinary applications across a variety of fields. Challenges can be addressed using theoretical, methodological, and technological approaches. The scope of Digital Twin includes, but is not limited to, the following areas:  ● Digital twin concepts, architecture, and frameworks ● Digital twin theory and method ● Digital twin key technologies and tools ● Digital twin applications and case studies ● Digital twin implementation ● Digital twin services ● Digital twin security ● Digital twin standards Digital twin also focuses on applications within and across broad sectors including: ● Smart manufacturing ● Aviation and aerospace ● Smart cities and construction ● Healthcare and medicine ● Robotics ● Shipping, vehicles and railways ● Industrial engineering and engineering management ● Agriculture ● Mining ● Power, energy and environment Digital Twin features a range of article types including research articles, case studies, method articles, study protocols, software tools, systematic reviews, data notes, brief reports, and opinion articles.
期刊最新文献
Digital twin-based modeling of natural gas leakage and dispersion in urban utility tunnels Data-driven modeling in digital twin for power system anomaly detection Is it possible to develop a digital twin for noise monitoring in manufacturing? Modeling of cross-scale human activity for digital twin workshop Digital twinning of temperature fields for modular multilayer multiphase pipeline structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1