Bicomponent melt spinning of polyamide 6/carbon nanotube/carbon black filaments: Investigation of effect of melt mass-flow rate on electrical conductivity

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Journal of Industrial Textiles Pub Date : 2023-01-01 DOI:10.1177/15280837231186174
Müslüm Kaplan, J. Ortega, Felix Krooß, T. Gries
{"title":"Bicomponent melt spinning of polyamide 6/carbon nanotube/carbon black filaments: Investigation of effect of melt mass-flow rate on electrical conductivity","authors":"Müslüm Kaplan, J. Ortega, Felix Krooß, T. Gries","doi":"10.1177/15280837231186174","DOIUrl":null,"url":null,"abstract":"Combining the several mixed phase structures and property profiles with a conductive, high aspect ratios nanofiller such as carbon nanotubes, graphene, and carbon black, specific morphological structures in melt spinning can be reached that offer much more potential for developing new functional fibers. Thus, understanding and controlling filler localization inside the developing phase morphology during melt spinning are the keys to the necessary structures. This work aimed to offer the possibility of producing fibers from electrically conductive polymer composites with a high filler concentration. First, the influence of different commercially available nanofillers, such as multi-wall carbon nanotubes (MWCNTs), graphene and carbon black on Polyamide 6 (PA6)-based nanocomposite melt-spun fibers were examined. Following the lab-scale melt spinning experiments, PA6/MWCNT-CB nanocomposite filaments containing 10 wt% nanofiller (each 5 wt%), were chosen for a pilot-scale bicomponent melt spinning process to investigate the influence of the nanocomposite core material feeding parameters on the properties of melt-spun fibers. The electrical conductivity decreased by half (from 3.13E-02 to 6.72E-03) when melt flow rate was increased from 3 g/min to 6 g/min. Scanning electron microscopy micrographs and thermal gravimetric analysis thermograms showed that the change in MFR values significantly affected the nanocomposite filaments’ surface properties.","PeriodicalId":16097,"journal":{"name":"Journal of Industrial Textiles","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Textiles","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15280837231186174","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

Combining the several mixed phase structures and property profiles with a conductive, high aspect ratios nanofiller such as carbon nanotubes, graphene, and carbon black, specific morphological structures in melt spinning can be reached that offer much more potential for developing new functional fibers. Thus, understanding and controlling filler localization inside the developing phase morphology during melt spinning are the keys to the necessary structures. This work aimed to offer the possibility of producing fibers from electrically conductive polymer composites with a high filler concentration. First, the influence of different commercially available nanofillers, such as multi-wall carbon nanotubes (MWCNTs), graphene and carbon black on Polyamide 6 (PA6)-based nanocomposite melt-spun fibers were examined. Following the lab-scale melt spinning experiments, PA6/MWCNT-CB nanocomposite filaments containing 10 wt% nanofiller (each 5 wt%), were chosen for a pilot-scale bicomponent melt spinning process to investigate the influence of the nanocomposite core material feeding parameters on the properties of melt-spun fibers. The electrical conductivity decreased by half (from 3.13E-02 to 6.72E-03) when melt flow rate was increased from 3 g/min to 6 g/min. Scanning electron microscopy micrographs and thermal gravimetric analysis thermograms showed that the change in MFR values significantly affected the nanocomposite filaments’ surface properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚酰胺6/碳纳米管/炭黑双组分熔体纺丝:熔体质量流率对电导率影响的研究
将几种混合相结构和性能特征与导电、高纵横比的纳米填料(如碳纳米管、石墨烯和炭黑)相结合,可以在熔融纺丝中获得特定的形态结构,为开发新的功能纤维提供了更大的潜力。因此,了解和控制熔体纺丝过程中发展相形态中的填料定位是必要结构的关键。这项工作旨在提供从具有高填充浓度的导电聚合物复合材料中生产纤维的可能性。首先,研究了不同的市售纳米填料,如多壁碳纳米管(MWCNTs)、石墨烯和炭黑对聚酰胺6 (PA6)基纳米复合熔融纺丝纤维的影响。在实验室规模的熔融纺丝实验之后,选择含有10 wt%纳米填料(各5 wt%)的PA6/MWCNT-CB纳米复合长丝进行中试规模的双组分熔融纺丝工艺,研究纳米复合芯材进料参数对熔融纺丝纤维性能的影响。当熔体流动速率从3 g/min增加到6 g/min时,电导率下降了一半(从3.13E-02降至6.72E-03)。扫描电镜显微图和热重分析热图显示,MFR值的变化对纳米复合材料的表面性能有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Industrial Textiles
Journal of Industrial Textiles MATERIALS SCIENCE, TEXTILES-
CiteScore
5.30
自引率
18.80%
发文量
165
审稿时长
2.3 months
期刊介绍: The Journal of Industrial Textiles is the only peer reviewed journal devoted exclusively to technology, processing, methodology, modelling and applications in technical textiles, nonwovens, coated and laminated fabrics, textile composites and nanofibers.
期刊最新文献
Influence of honeycomb structures on fluids transmission and heat retention properties; An initiative towards stretchable weaves Experimental study on protective performance of ACF sandwich composites with different configurations in high-velocity impact Comprehensive study of the off-axis mechanical behaviors of a Polytetrafluoroethylene‐ coated fabric after 23 Years of service at Shanghai stadium Transformation of zinc acetate into ZnO nanofibers for enhanced NOx gas sensing: Cost-effective strategies and additive-free optimization Multifunctional sandwich materials with ROTIS structure for improved thermal and electrical properties in construction application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1