{"title":"The role of particle shape in computational modelling of granular matter","authors":"Jidong Zhao, Shiwei Zhao, Stefan Luding","doi":"10.1038/s42254-023-00617-9","DOIUrl":null,"url":null,"abstract":"Granular matter is ubiquitous in nature and is present in diverse forms in important engineering, industrial and natural processes. Particle-based computational modelling has become indispensable to understand and predict the complex behaviour of granular matter in these processes. The success of modern computational models requires realistic and efficient consideration of particle shape. Realistic particle shapes in naturally occurring and engineered materials offer diverse challenges owing to their multiscale nature in both length and time. Furthermore, the complex interactions with other materials, such as interstitial fluids, are highly nonlinear and commonly involve multiphysics coupling. This Technical Review presents a comprehensive appraisal of state-of-the-art computational models for granular particles of either naturally occurring shapes or engineered geometries. It focuses on particle shape characterization, representation and implementation, as well as its important effects. In addition, the particles may be hard, highly deformable, crushable or phase transformable; they might change their behaviour in the presence of interstitial fluids and are sensitive to density, confining stress and flow state. We describe generic methodologies that capture the universal features of granular matter and some unique approaches developed for special but important applications. Granular matter is ubiquitous in engineering, industrial and natural processes. This Technical Review overviews the latest developments in computational modelling of granular matter with a focus on the role of particle shape and discusses pertaining future challenges.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"5 9","pages":"505-525"},"PeriodicalIF":44.8000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-023-00617-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 3
Abstract
Granular matter is ubiquitous in nature and is present in diverse forms in important engineering, industrial and natural processes. Particle-based computational modelling has become indispensable to understand and predict the complex behaviour of granular matter in these processes. The success of modern computational models requires realistic and efficient consideration of particle shape. Realistic particle shapes in naturally occurring and engineered materials offer diverse challenges owing to their multiscale nature in both length and time. Furthermore, the complex interactions with other materials, such as interstitial fluids, are highly nonlinear and commonly involve multiphysics coupling. This Technical Review presents a comprehensive appraisal of state-of-the-art computational models for granular particles of either naturally occurring shapes or engineered geometries. It focuses on particle shape characterization, representation and implementation, as well as its important effects. In addition, the particles may be hard, highly deformable, crushable or phase transformable; they might change their behaviour in the presence of interstitial fluids and are sensitive to density, confining stress and flow state. We describe generic methodologies that capture the universal features of granular matter and some unique approaches developed for special but important applications. Granular matter is ubiquitous in engineering, industrial and natural processes. This Technical Review overviews the latest developments in computational modelling of granular matter with a focus on the role of particle shape and discusses pertaining future challenges.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.