Convection heat transfer of stepped basin single slope solar still: A numerical investigation

IF 1.1 Q4 ENGINEERING, MECHANICAL Journal of Mechanical Engineering and Sciences Pub Date : 2023-06-28 DOI:10.15282/jmes.17.2.2023.2.0746
M. Varun, S. Subhani, R. Senthil Kumar
{"title":"Convection heat transfer of stepped basin single slope solar still: A numerical investigation","authors":"M. Varun, S. Subhani, R. Senthil Kumar","doi":"10.15282/jmes.17.2.2023.2.0746","DOIUrl":null,"url":null,"abstract":"Solar-powered desalination is a quick and easy way to make drinking water. Numerous solar distillation systems have been investigated for various parameter modifications based on local resource availability. In this work, a solar still with a modified stepped basin is investigated to raise the rate of internal evaporation and, therefore the output yield of the solar still. Stepped basin solar stills are taken into consideration for the study since they are very effective because the water's surface exposure to radiation is greater. Thus, increasing the rate of internal water evaporation enhances the rate of convective heat transfer between the evaporating and condensing surfaces, leading to improved and consistent output. The two-dimensional stepped basin single slope solar still was investigated and contrasted with the traditional single slope still in terms of heat transfer and fluid dynamics. To optimize the configuration for better performance in various types of climatic and operational circumstances that imitate the scenario of daily life, design elements such as the number of steps and the different heights of the basin are also taken into account. Each step was added with far more success than the one before it, up until the length was reduced to 1.16% of the entire shorter length. This numerical study enables us to draw the conclusion that the rise in natural heat transfer rate with the addition of steps is mostly caused by the increased surface area and the inherently restrictive nature within the domain. Additionally, with an increase in Rayleigh number, Ra, the gradient variations of the traditional single slope solar still overheat transfer features have been greatly regulated and successfully raised for the modified stepped basin Solar still.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.17.2.2023.2.0746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-powered desalination is a quick and easy way to make drinking water. Numerous solar distillation systems have been investigated for various parameter modifications based on local resource availability. In this work, a solar still with a modified stepped basin is investigated to raise the rate of internal evaporation and, therefore the output yield of the solar still. Stepped basin solar stills are taken into consideration for the study since they are very effective because the water's surface exposure to radiation is greater. Thus, increasing the rate of internal water evaporation enhances the rate of convective heat transfer between the evaporating and condensing surfaces, leading to improved and consistent output. The two-dimensional stepped basin single slope solar still was investigated and contrasted with the traditional single slope still in terms of heat transfer and fluid dynamics. To optimize the configuration for better performance in various types of climatic and operational circumstances that imitate the scenario of daily life, design elements such as the number of steps and the different heights of the basin are also taken into account. Each step was added with far more success than the one before it, up until the length was reduced to 1.16% of the entire shorter length. This numerical study enables us to draw the conclusion that the rise in natural heat transfer rate with the addition of steps is mostly caused by the increased surface area and the inherently restrictive nature within the domain. Additionally, with an increase in Rayleigh number, Ra, the gradient variations of the traditional single slope solar still overheat transfer features have been greatly regulated and successfully raised for the modified stepped basin Solar still.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阶梯式槽式单斜太阳蒸馏器对流换热的数值研究
太阳能脱盐是一种快速简便的制造饮用水的方法。许多太阳能蒸馏系统已经研究了各种参数修改基于当地资源的可用性。本文研究了一种改进的阶梯式蒸馏器,以提高内部蒸发速率,从而提高太阳能蒸馏器的产量。阶梯式太阳能蒸馏器在研究中被考虑,因为它们非常有效,因为水的表面暴露于辐射更大。因此,增加内部水蒸发速率可以提高蒸发面和冷凝面之间的对流换热速率,从而提高和稳定输出。对二维阶梯盆式单斜面太阳蒸馏器进行了研究,并与传统单斜面太阳蒸馏器在传热和流体力学方面进行了对比。为了优化配置,使其在模拟日常生活场景的各种气候和操作环境中具有更好的性能,还考虑了台阶数量和盆地不同高度等设计元素。每添加一步都比前一步成功得多,直到长度减少到整个较短长度的1.16%。通过数值研究,我们可以得出这样的结论:随着台阶的增加,自然换热率的上升主要是由于表面积的增加和区域内固有的限制性。此外,随着瑞利数Ra的增加,改进的阶梯式太阳蒸馏器的传统单斜面太阳蒸馏器传热特征的梯度变化得到了很大的调节并成功提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
42
审稿时长
20 weeks
期刊介绍: The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.
期刊最新文献
Investigation of collision estimation with vehicle and pedestrian using CARLA simulation software Active suspension for all-terrain vehicle with intelligent control using artificial neural networks The influence of helmet certification in motorcycle helmets protective performance Sustainable considerations in additive manufacturing processes: A review Co-simulation approach for computational aero-acoustic modeling: Investigating wind-induced noise within two-way radio microphone ports cavity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1