Adhesion dynamics under time-varying deposition: A study on robotic assisted extrusion

IF 3.9 Q2 ENGINEERING, INDUSTRIAL Advances in Industrial and Manufacturing Engineering Pub Date : 2022-11-01 DOI:10.1016/j.aime.2022.100101
Sean Psulkowski , Charissa Lucien , Helen Parker , Bryant Rodriguez , Dawn Yang , Tarik Dickens
{"title":"Adhesion dynamics under time-varying deposition: A study on robotic assisted extrusion","authors":"Sean Psulkowski ,&nbsp;Charissa Lucien ,&nbsp;Helen Parker ,&nbsp;Bryant Rodriguez ,&nbsp;Dawn Yang ,&nbsp;Tarik Dickens","doi":"10.1016/j.aime.2022.100101","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advances in robotic assisted-additive manufacturing (RA-AM) have enabled rapid material extrusion-based processing with comprehensive data collection. The following study investigates the adhesion dynamics of the initial printed layer across parameters such as surface energies, stand-off heights, and extrusion speeds of up to 100 mm/s, using an applied in-situ thermal analysis technique. Observations indicate that the characteristic length parameter, <span><math><mrow><msub><mi>L</mi><mi>c</mi></msub></mrow></math></span> &lt; 0.05 mm, is adequate in anchoring the thermal melt, which adheres to the substrate when the nozzle proximity to the surface increases. Up to 100% molten area is contacting the surface prior to translation, and a final eccentricity over 0.85 has been observed. Through an analysis of variance, operational parameters of lower nozzle heights, printing speeds, and higher surface energy were statistically significant. The resultant in-situ characterization-driven data, was used to train a convolutional neural network (CNN). The model tested at an accuracy of 90.9%, and was able to distinguish between failed prints and initially adhered structures.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"5 ","pages":"Article 100101"},"PeriodicalIF":3.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666912922000289/pdfft?md5=f296766b745111821c00f7c1d543f9e4&pid=1-s2.0-S2666912922000289-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Industrial and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666912922000289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in robotic assisted-additive manufacturing (RA-AM) have enabled rapid material extrusion-based processing with comprehensive data collection. The following study investigates the adhesion dynamics of the initial printed layer across parameters such as surface energies, stand-off heights, and extrusion speeds of up to 100 mm/s, using an applied in-situ thermal analysis technique. Observations indicate that the characteristic length parameter, Lc < 0.05 mm, is adequate in anchoring the thermal melt, which adheres to the substrate when the nozzle proximity to the surface increases. Up to 100% molten area is contacting the surface prior to translation, and a final eccentricity over 0.85 has been observed. Through an analysis of variance, operational parameters of lower nozzle heights, printing speeds, and higher surface energy were statistically significant. The resultant in-situ characterization-driven data, was used to train a convolutional neural network (CNN). The model tested at an accuracy of 90.9%, and was able to distinguish between failed prints and initially adhered structures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时变沉积下的粘附动力学:机器人辅助挤压的研究
机器人辅助增材制造(RA-AM)的最新进展使基于材料挤压的快速加工与全面的数据收集成为可能。下面的研究使用原位热分析技术,研究了初始打印层的粘附动力学,这些参数包括表面能、分离高度和高达100 mm/s的挤出速度。观测结果表明,特征长度参数Lc <0.05 mm,足以锚定热熔体,当喷嘴接近表面时,热熔体粘附在基材上。在平移之前,高达100%的熔融面积与表面接触,并观察到最终偏心率超过0.85。通过方差分析,低喷嘴高度、打印速度和高表面能的操作参数具有统计学意义。生成的原位表征驱动数据用于训练卷积神经网络(CNN)。该模型的测试精度为90.9%,并且能够区分失败的打印和最初粘附的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Industrial and Manufacturing Engineering
Advances in Industrial and Manufacturing Engineering Engineering-Engineering (miscellaneous)
CiteScore
6.60
自引率
0.00%
发文量
31
审稿时长
18 days
期刊最新文献
Experimental investigation on micro-EDM hybrid drilling process Impact of graphene nanoparticles on DLP-printed parts' mechanical behavior Erratum to “Influence of changing loading directions on damage in sheet metal forming” [Adv. Ind. Manuf. Eng. 8 (2024) 100139] Modeling of equivalent strain in 2D cross-sections of open die forged components using neural networks Influence on micro-geometry and surface characteristics of laser powder bed fusion built 17-4 PH miniature spur gears in laser shock peening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1