Calibrated Edgeworth expansions of finite population L-statistics

IF 1.4 3区 社会学 Q3 DEMOGRAPHY Mathematical Population Studies Pub Date : 2020-04-02 DOI:10.1080/08898480.2018.1553408
Andrius Čiginas, D. Pumputis
{"title":"Calibrated Edgeworth expansions of finite population L-statistics","authors":"Andrius Čiginas, D. Pumputis","doi":"10.1080/08898480.2018.1553408","DOIUrl":null,"url":null,"abstract":"ABSTRACT A short Edgeworth expansion is approximated for the distribution function of a Studentized linear combination of order statistics computed on a random sample drawn without replacement from a finite population, and using auxiliary data available for the population units. Simulations show an improvement over the usual Gaussian approximation and previous empirical Edgeworth expansions. Naive synthetic estimates of the distribution function, based on the auxiliary data only, yield accurate results when the auxiliary variable is well correlated with the study variable.","PeriodicalId":49859,"journal":{"name":"Mathematical Population Studies","volume":"27 1","pages":"59 - 80"},"PeriodicalIF":1.4000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08898480.2018.1553408","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Population Studies","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/08898480.2018.1553408","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEMOGRAPHY","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT A short Edgeworth expansion is approximated for the distribution function of a Studentized linear combination of order statistics computed on a random sample drawn without replacement from a finite population, and using auxiliary data available for the population units. Simulations show an improvement over the usual Gaussian approximation and previous empirical Edgeworth expansions. Naive synthetic estimates of the distribution function, based on the auxiliary data only, yield accurate results when the auxiliary variable is well correlated with the study variable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有限总体L-统计量的校正Edgeworth展开式
摘要:对阶统计量的研究线性组合的分布函数进行了短Edgeworth展开式近似,该线性组合是在从有限总体中无需替换的随机样本上计算的,并使用总体单位可用的辅助数据。模拟表明,与通常的高斯近似和以前的经验Edgeworth展开相比,有了改进。当辅助变量与研究变量良好相关时,仅基于辅助数据对分布函数的朴素综合估计会产生准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Population Studies
Mathematical Population Studies 数学-数学跨学科应用
CiteScore
3.20
自引率
11.10%
发文量
7
审稿时长
>12 weeks
期刊介绍: Mathematical Population Studies publishes carefully selected research papers in the mathematical and statistical study of populations. The journal is strongly interdisciplinary and invites contributions by mathematicians, demographers, (bio)statisticians, sociologists, economists, biologists, epidemiologists, actuaries, geographers, and others who are interested in the mathematical formulation of population-related questions. The scope covers both theoretical and empirical work. Manuscripts should be sent to Manuscript central for review. The editor-in-chief has final say on the suitability for publication.
期刊最新文献
Researching algorithm awareness: methodological approaches to investigate how people perceive, know, and interact with algorithms Fractional Lindley distribution generated by time scale theory, with application to discrete-time lifetime data Estimating the structure by age and sex of the US sexually active population Optimizing criterion for the upper limit of the signal response of brain neurons Optimal estimators of the population mean of a skewed distribution using auxiliary variables in median ranked-set sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1