{"title":"Deep convolutional neural network for chronic kidney disease prediction using ultrasound imaging","authors":"Smitha Patil, Savita Choudhary","doi":"10.1515/bams-2020-0068","DOIUrl":null,"url":null,"abstract":"Abstract Objectives Chronic kidney disease (CKD) is a common disease and it is related to a higher risk of cardiovascular disease and end-stage renal disease that can be prevented by the earlier recognition and diagnosis of individuals at risk. Even though risk factors for CKD have been recognized, the effectiveness of CKD risk classification via prediction models remains uncertain. This paper intends to introduce a new predictive model for CKD using US image. Methods The proposed model includes three main phases “(1) preprocessing, (2) feature extraction, (3) and classification.” In the first phase, the input image is subjected to preprocessing, which deploys image inpainting and median filtering processes. After preprocessing, feature extraction takes place under four cases; (a) texture analysis to detect the characteristics of texture, (b) proposed high-level feature enabled local binary pattern (LBP) extraction, (c) area based feature extraction, and (d) mean intensity based feature extraction. These extracted features are then subjected for classification, where “optimized deep convolutional neural network (DCNN)” is used. In order to make the prediction more accurate, the weight and the activation function of DCNN are optimally chosen by a new hybrid model termed as diversity maintained hybrid whale moth flame optimization (DM-HWM) model. Results The accuracy of adopted model at 40th training percentage was 44.72, 11.02, 5.59, 3.92, 3.92, 3.57, 2.59, 1.71, 1.68, and 0.42% superior to traditional artificial neural networks (ANN), support vector machine (SVM), NB, J48, NB-tree, LR, composite hypercube on iterated random projection (CHIRP), CNN, moth flame optimization (MFO), and whale optimization algorithm (WOA) models. Conclusions Finally, the superiority of the adopted scheme is validated over other conventional models in terms of various measures.","PeriodicalId":42620,"journal":{"name":"Bio-Algorithms and Med-Systems","volume":"17 1","pages":"137 - 163"},"PeriodicalIF":1.2000,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/bams-2020-0068","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Algorithms and Med-Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bams-2020-0068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract Objectives Chronic kidney disease (CKD) is a common disease and it is related to a higher risk of cardiovascular disease and end-stage renal disease that can be prevented by the earlier recognition and diagnosis of individuals at risk. Even though risk factors for CKD have been recognized, the effectiveness of CKD risk classification via prediction models remains uncertain. This paper intends to introduce a new predictive model for CKD using US image. Methods The proposed model includes three main phases “(1) preprocessing, (2) feature extraction, (3) and classification.” In the first phase, the input image is subjected to preprocessing, which deploys image inpainting and median filtering processes. After preprocessing, feature extraction takes place under four cases; (a) texture analysis to detect the characteristics of texture, (b) proposed high-level feature enabled local binary pattern (LBP) extraction, (c) area based feature extraction, and (d) mean intensity based feature extraction. These extracted features are then subjected for classification, where “optimized deep convolutional neural network (DCNN)” is used. In order to make the prediction more accurate, the weight and the activation function of DCNN are optimally chosen by a new hybrid model termed as diversity maintained hybrid whale moth flame optimization (DM-HWM) model. Results The accuracy of adopted model at 40th training percentage was 44.72, 11.02, 5.59, 3.92, 3.92, 3.57, 2.59, 1.71, 1.68, and 0.42% superior to traditional artificial neural networks (ANN), support vector machine (SVM), NB, J48, NB-tree, LR, composite hypercube on iterated random projection (CHIRP), CNN, moth flame optimization (MFO), and whale optimization algorithm (WOA) models. Conclusions Finally, the superiority of the adopted scheme is validated over other conventional models in terms of various measures.
期刊介绍:
The journal Bio-Algorithms and Med-Systems (BAMS), edited by the Jagiellonian University Medical College, provides a forum for the exchange of information in the interdisciplinary fields of computational methods applied in medicine, presenting new algorithms and databases that allows the progress in collaborations between medicine, informatics, physics, and biochemistry. Projects linking specialists representing these disciplines are welcome to be published in this Journal. Articles in BAMS are published in English. Topics Bioinformatics Systems biology Telemedicine E-Learning in Medicine Patient''s electronic record Image processing Medical databases.