D. Kumar, Priyesh Kumar, Pradip Kumar, S. Singh, U. Singh
{"title":"PCM Transformation: Properties and Their Estimation","authors":"D. Kumar, Priyesh Kumar, Pradip Kumar, S. Singh, U. Singh","doi":"10.13052/JRSS0974-8024.1421","DOIUrl":null,"url":null,"abstract":"In the present piece of work, we are going to propose a new trigonometry based transformation called PCM transformation. We have been obtained its various statistical properties such as survival function, hazard rate function, reverse-hazard rate function, moment generating function, median, stochastic ordering etc. Maximum Likelihood Estimator (MLE) method under classical approach and Bayesian approaches are tackled to obtain the estimate of unknown parameter. A real dataset has been applied to check its fitness on the basis of fitting criterions Akaike Information criterion (AIC), Bayesian Information criterion (BIC), log-likelihood (-LL) and Kolmogrov-Smirnov (KS) test statistic values in real sense. A simulation study is also being conducted to assess the estimator’s long-term attitude and compared over some chosen distributions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/JRSS0974-8024.1421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In the present piece of work, we are going to propose a new trigonometry based transformation called PCM transformation. We have been obtained its various statistical properties such as survival function, hazard rate function, reverse-hazard rate function, moment generating function, median, stochastic ordering etc. Maximum Likelihood Estimator (MLE) method under classical approach and Bayesian approaches are tackled to obtain the estimate of unknown parameter. A real dataset has been applied to check its fitness on the basis of fitting criterions Akaike Information criterion (AIC), Bayesian Information criterion (BIC), log-likelihood (-LL) and Kolmogrov-Smirnov (KS) test statistic values in real sense. A simulation study is also being conducted to assess the estimator’s long-term attitude and compared over some chosen distributions.