Physiological Response of a Natural Central Incisor Tooth to Various Loading Conditions: A 3D Finite Element Study

D. Nikam, Abbas S. Milani
{"title":"Physiological Response of a Natural Central Incisor Tooth to Various Loading Conditions: A 3D Finite Element Study","authors":"D. Nikam, Abbas S. Milani","doi":"10.21926/rpm.2302017","DOIUrl":null,"url":null,"abstract":"This study evaluates the influence of different loading angles and the area of loading on the ensuing stress distribution and the physical response of a natural central incisor tooth, using a 3D finite element analysis. The CAD model of the incisor tooth assembly (including enamel, dentin, periodontal ligament, pulp, gingiva and jaw bone) was subject to an external (chewing) load of 100 N, over four different areas and at four different angles along the vertical. It was observed that the tooth experiences high von-Mises equivalent stresses and high bending when the load applied is closer to the incisal edge of the crown. Also, the stresses on the dentin, in general, increased with the increase in the loading angle regardless of the area of loading; with the highest stress (~70 MPa) generated at 45° angle. The percentage change observed in dentin von-Mises stresses was higher than that of enamel when the loading angle was increased from 0° to 45°, because of the higher stiffness of enamel and structural differences in enamel and dentin. The numerical results indicated that applying loads on incisal edge would simulate a severe loading condition for the incisor tooth.","PeriodicalId":87352,"journal":{"name":"Recent progress in materials","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent progress in materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/rpm.2302017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the influence of different loading angles and the area of loading on the ensuing stress distribution and the physical response of a natural central incisor tooth, using a 3D finite element analysis. The CAD model of the incisor tooth assembly (including enamel, dentin, periodontal ligament, pulp, gingiva and jaw bone) was subject to an external (chewing) load of 100 N, over four different areas and at four different angles along the vertical. It was observed that the tooth experiences high von-Mises equivalent stresses and high bending when the load applied is closer to the incisal edge of the crown. Also, the stresses on the dentin, in general, increased with the increase in the loading angle regardless of the area of loading; with the highest stress (~70 MPa) generated at 45° angle. The percentage change observed in dentin von-Mises stresses was higher than that of enamel when the loading angle was increased from 0° to 45°, because of the higher stiffness of enamel and structural differences in enamel and dentin. The numerical results indicated that applying loads on incisal edge would simulate a severe loading condition for the incisor tooth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
天然中央切牙在不同载荷条件下的生理反应:三维有限元研究
本研究通过三维有限元分析,评估了不同加载角度和加载面积对自然中切牙随后的应力分布和物理响应的影响。门牙组件(包括牙釉质、牙本质、牙周膜、牙髓、牙龈和颌骨)的CAD模型在四个不同区域和沿垂直方向的四个不同角度上承受100N的外部(咀嚼)载荷。据观察,当施加的载荷更接近牙冠的切缘时,牙齿会经历高的von Mises等效应力和高的弯曲。此外,牙本质上的应力通常随着加载角度的增加而增加,而与加载面积无关;在45°角处产生的应力最高(~70MPa)。当加载角度从0°增加到45°时,在牙本质von Mises应力中观察到的百分比变化高于釉质,这是因为釉质的硬度更高,并且釉质和牙本质的结构存在差异。数值结果表明,在切牙边缘施加载荷将模拟切牙的严重载荷条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sustainable Concrete with Zero Carbon Footprint Construction and Evaluation of a Modular Anthropomorphic Phantom of the Skull with an Exchangeable Specimen Jar to Optimize the Radiological Examination of Temporal Bone Pathology Impact of Pernicious Chemicals on Geopolymer and Alkali-Activated Composites Incorporated with Different Fiber Types: A Review Spark Plasma Sintering of Cu-Ti-Ni Ternary Alloy: Microstructural, Thermal and Electrical Properties Spin Entanglement – A Unifying Principle for Superconductors and Molecular Bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1