{"title":"New Process Simulation Procedure for High-Rate Plasma Jet Machining","authors":"Johannes Meister, Thomas Arnold","doi":"10.1007/s11090-010-9267-y","DOIUrl":null,"url":null,"abstract":"<p>Surface figuring using chemically reactive plasma jet machining (PJM) is a promising non-conventional technology for deterministic ultra-precision machining of optical components. Based on chemical reactions between plasma generated radicals and the surface atoms this technology is capable to fabricate complex shaped free form surfaces. Since the material removal rate during PJM depends strongly on the surface temperature which itself is influenced by the jet heat flux to the surface, the arising nonlinear effects on the etch result have to be regarded. Conventionally applied dwell time calculation algorithms do not consider those effects leading to significant machining errors in some cases. In order to improve the machining procedure with respect to deterministic material removal yielding predictable results a process simulation model has been developed. This model considers spatio-temporal variations of surface temperature and temperature dependent material removal and is able to predict the final workpiece topography after machining.</p>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"31 1","pages":"91 - 107"},"PeriodicalIF":2.6000,"publicationDate":"2010-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11090-010-9267-y","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-010-9267-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 45
Abstract
Surface figuring using chemically reactive plasma jet machining (PJM) is a promising non-conventional technology for deterministic ultra-precision machining of optical components. Based on chemical reactions between plasma generated radicals and the surface atoms this technology is capable to fabricate complex shaped free form surfaces. Since the material removal rate during PJM depends strongly on the surface temperature which itself is influenced by the jet heat flux to the surface, the arising nonlinear effects on the etch result have to be regarded. Conventionally applied dwell time calculation algorithms do not consider those effects leading to significant machining errors in some cases. In order to improve the machining procedure with respect to deterministic material removal yielding predictable results a process simulation model has been developed. This model considers spatio-temporal variations of surface temperature and temperature dependent material removal and is able to predict the final workpiece topography after machining.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.