Effect of alkali metal promoters on catalytic performance of Co-based catalysts in selective hydrogenation of aniline to cyclohexylamine

IF 0.7 4区 工程技术 Q4 CHEMISTRY, APPLIED Polish Journal of Chemical Technology Pub Date : 2023-02-18 DOI:10.2478/pjct-2023-0001
R. Valeš, Martin Zapletal, J. Krupka
{"title":"Effect of alkali metal promoters on catalytic performance of Co-based catalysts in selective hydrogenation of aniline to cyclohexylamine","authors":"R. Valeš, Martin Zapletal, J. Krupka","doi":"10.2478/pjct-2023-0001","DOIUrl":null,"url":null,"abstract":"Abstract In this study, a series of Co-based catalysts with alkali metal carbonate promoters were prepared to investigate the interrelation between promotion effect of these carbonates and catalytic performance for aniline hydrogenation to cyclohexylamine in vapour phase. The chemical promoters Li2CO3 and Na2CO3 leading to decrease in catalytic activity of cobalt catalysts for aniline hydrogenation. Catalysts with K2CO3 and Cs2CO3 loadings have practically no catalytic activity for hydrogenation of aniline. Results of TPD of aniline proved that presence of alkali metals carbonates restricts the adsorption of aniline on the surface of cobalt catalysts. Further, it was found that the addition of Na2CO3 greatly enhances the catalytic selectivity towards the cyclohexylamine and inhibits the consecutive reactions of cyclohexylamine leading to formation of by-products such as dicyclohexylamine and N-phenylcyclohexylamine.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Chemical Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pjct-2023-0001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this study, a series of Co-based catalysts with alkali metal carbonate promoters were prepared to investigate the interrelation between promotion effect of these carbonates and catalytic performance for aniline hydrogenation to cyclohexylamine in vapour phase. The chemical promoters Li2CO3 and Na2CO3 leading to decrease in catalytic activity of cobalt catalysts for aniline hydrogenation. Catalysts with K2CO3 and Cs2CO3 loadings have practically no catalytic activity for hydrogenation of aniline. Results of TPD of aniline proved that presence of alkali metals carbonates restricts the adsorption of aniline on the surface of cobalt catalysts. Further, it was found that the addition of Na2CO3 greatly enhances the catalytic selectivity towards the cyclohexylamine and inhibits the consecutive reactions of cyclohexylamine leading to formation of by-products such as dicyclohexylamine and N-phenylcyclohexylamine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碱金属助催化剂对钴基催化剂苯胺选择性加氢制环己胺催化性能的影响
摘要本研究制备了一系列带有碱金属碳酸盐促进剂的钴基催化剂,以研究这些碳酸盐的促进作用与苯胺气相加氢制环己胺的催化性能之间的相互关系。化学促进剂Li2CO3和Na2CO3导致钴催化剂对苯胺加氢的催化活性降低。负载K2CO3和Cs2CO3的催化剂实际上对苯胺的氢化没有催化活性。苯胺的TPD结果表明,碱金属碳酸盐的存在限制了苯胺在钴催化剂表面的吸附。此外,发现Na2CO3的加入大大提高了对环己胺的催化选择性,并抑制了环己胺导致副产物如二环己胺和N-苯基环己胺形成的连续反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polish Journal of Chemical Technology
Polish Journal of Chemical Technology CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
1.70
自引率
10.00%
发文量
22
审稿时长
4.5 months
期刊介绍: Polish Journal of Chemical Technology is a peer-reviewed, international journal devoted to fundamental and applied chemistry, as well as chemical engineering and biotechnology research. It has a very broad scope but favors interdisciplinary research that bring chemical technology together with other disciplines. All authors receive very fast and comprehensive peer-review. Additionally, every published article is promoted to researchers working in the same field.
期刊最新文献
A Comprehensive Analysis of the Hydrogen Generation Technology Through Electrochemical Water and Industrial Wastewater Electrolysis Sulfonation Modification of Guar Gum and Its Performance as a Fracturing Fluids Thickener Synthesis and Self-assembly of a Simple CO2-responsive Diblock Polymer Preparation of nano SnO2-Sb2O3 composite electrode by cathodic deposition for the elimination of phenol by Sonoelectrochemical oxidation Synthesis and characterization of curcumin-encapsulated loaded on carboxymethyl cellulose with docking validation as α-amylase and α-glucosidase inhibitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1