Synthesis and structure of new modified derivatives based on the quinine molecule and their biological activity

IF 0.7 4区 工程技术 Q4 CHEMISTRY, APPLIED Polish Journal of Chemical Technology Pub Date : 2023-03-01 DOI:10.2478/pjct-2023-0005
G.K. Mukusheva, A.R. Zhasymbekova, Z. Nurmaganbetov
{"title":"Synthesis and structure of new modified derivatives based on the quinine molecule and their biological activity","authors":"G.K. Mukusheva, A.R. Zhasymbekova, Z. Nurmaganbetov","doi":"10.2478/pjct-2023-0005","DOIUrl":null,"url":null,"abstract":"Abstract The relevance of the subject matter is conditioned by the constantly growing need to meet human needs in the field of medicine, in particular, the search, study, and further introduction of new types of medicines into practical use. The purpose of this study is to investigate the synthesis of modified quinine alkaloid derivatives, and their structure, to identify the properties and biological activity of antimalarial drugs based on quinine molecules, and to structure the general data of these substances. The leading approach is the analysis of the synthesis of quinine derivatives, their chemical and physical properties, and their ability to exert a medicinal effect. The abstracting method allows structuring alkaloid derivatives and establishing a general relationship between the structural configuration of molecules and their impact on human health in a number of related derivatives. The study identifies the main antimalarial drugs based on quinine molecules, including a comparative analysis of their effectiveness and overall biological activity.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Chemical Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pjct-2023-0005","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The relevance of the subject matter is conditioned by the constantly growing need to meet human needs in the field of medicine, in particular, the search, study, and further introduction of new types of medicines into practical use. The purpose of this study is to investigate the synthesis of modified quinine alkaloid derivatives, and their structure, to identify the properties and biological activity of antimalarial drugs based on quinine molecules, and to structure the general data of these substances. The leading approach is the analysis of the synthesis of quinine derivatives, their chemical and physical properties, and their ability to exert a medicinal effect. The abstracting method allows structuring alkaloid derivatives and establishing a general relationship between the structural configuration of molecules and their impact on human health in a number of related derivatives. The study identifies the main antimalarial drugs based on quinine molecules, including a comparative analysis of their effectiveness and overall biological activity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型奎宁分子修饰衍生物的合成、结构及其生物活性
摘要主题的相关性取决于不断增长的满足人类在医学领域需求的需求,特别是搜索、研究和进一步将新型药物引入实际应用。本研究的目的是研究修饰奎宁生物碱衍生物的合成及其结构,以奎宁分子为基础鉴定抗疟药物的性质和生物活性,并构建这些物质的一般数据。主要方法是分析奎宁衍生物的合成、它们的化学和物理性质以及它们发挥药用作用的能力。该提取方法允许构建生物碱衍生物,并在许多相关衍生物中建立分子的结构配置与其对人类健康的影响之间的一般关系。该研究确定了基于奎宁分子的主要抗疟药物,包括对其有效性和总体生物活性的比较分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polish Journal of Chemical Technology
Polish Journal of Chemical Technology CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
1.70
自引率
10.00%
发文量
22
审稿时长
4.5 months
期刊介绍: Polish Journal of Chemical Technology is a peer-reviewed, international journal devoted to fundamental and applied chemistry, as well as chemical engineering and biotechnology research. It has a very broad scope but favors interdisciplinary research that bring chemical technology together with other disciplines. All authors receive very fast and comprehensive peer-review. Additionally, every published article is promoted to researchers working in the same field.
期刊最新文献
A Comprehensive Analysis of the Hydrogen Generation Technology Through Electrochemical Water and Industrial Wastewater Electrolysis Sulfonation Modification of Guar Gum and Its Performance as a Fracturing Fluids Thickener Synthesis and Self-assembly of a Simple CO2-responsive Diblock Polymer Preparation of nano SnO2-Sb2O3 composite electrode by cathodic deposition for the elimination of phenol by Sonoelectrochemical oxidation Synthesis and characterization of curcumin-encapsulated loaded on carboxymethyl cellulose with docking validation as α-amylase and α-glucosidase inhibitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1