Peter Zakšek, M. Zupančič, P. Gregorčič, I. Golobič
{"title":"Investigation of Nucleate Pool Boiling of Saturated Pure Liquids and Ethanol-Water Mixtures on Smooth and Laser-Textured Surfaces","authors":"Peter Zakšek, M. Zupančič, P. Gregorčič, I. Golobič","doi":"10.1080/15567265.2019.1689590","DOIUrl":null,"url":null,"abstract":"ABSTRACT Nucleate pool boiling experiments were performed on plain and five laser-textured stainless-steel foils using saturated pure water, 100% ethanol, 0.4% and 4.2% mole fraction ethanol – water mixtures. All laser-textured samples contained untreated, smooth 0.5 mm wide regions and intermediate textured surfaces, that differ in the width of the laser patterned regions (from 0.5 mm to 2.5 mm). For smooth surfaces, we measured significant decreases in average heat transfer coefficients (HTC) and increases in bubble activation temperatures in comparison with the laser-textured surfaces for all the tested working fluids. Significant enhancement in HTC (280%) on a textured heating surface with 2.5-mm-wide laser pattern was recorded using pure water. For pure ethanol, the highest enhancement of 268% was achieved on a heating surface with 1.5-mm-wide laser pattern. The highest enhancement of HTC for the tested binary mixtures was obtained using 2.0-mm wide-laser-textured regions (HTC improved by 235% and 279% for the 0.4% and 4.2% mixtures, respectively). Our results indicate that laser texturing can significantly improve boiling performance when the intervals of the laser-textured patterns are close to the capillary lengths of the tested fluids.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"24 1","pages":"29 - 42"},"PeriodicalIF":2.7000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2019.1689590","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2019.1689590","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 36
Abstract
ABSTRACT Nucleate pool boiling experiments were performed on plain and five laser-textured stainless-steel foils using saturated pure water, 100% ethanol, 0.4% and 4.2% mole fraction ethanol – water mixtures. All laser-textured samples contained untreated, smooth 0.5 mm wide regions and intermediate textured surfaces, that differ in the width of the laser patterned regions (from 0.5 mm to 2.5 mm). For smooth surfaces, we measured significant decreases in average heat transfer coefficients (HTC) and increases in bubble activation temperatures in comparison with the laser-textured surfaces for all the tested working fluids. Significant enhancement in HTC (280%) on a textured heating surface with 2.5-mm-wide laser pattern was recorded using pure water. For pure ethanol, the highest enhancement of 268% was achieved on a heating surface with 1.5-mm-wide laser pattern. The highest enhancement of HTC for the tested binary mixtures was obtained using 2.0-mm wide-laser-textured regions (HTC improved by 235% and 279% for the 0.4% and 4.2% mixtures, respectively). Our results indicate that laser texturing can significantly improve boiling performance when the intervals of the laser-textured patterns are close to the capillary lengths of the tested fluids.
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.