{"title":"REVIEW OF CURRENT RESEARCH ON CHITOSAN AS A RAW MATERIAL IN THREE-DIMENSIONAL PRINTING TECHNOLOGY IN BIOMEDICAL APPLICATIONS","authors":"Szymon Mania, Adrianna Banach, R. Tylingo","doi":"10.15259/pcacd.25.003","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative solutions in the biomedical sector, including drug delivery systems, disease modelling and tissue and organ engineering. Due to its remarkable and promising biological and structural properties, chitosan has been widely studied for decades in several potential applications in the biomedical field. However, tools in the form of 3D printers have created new possibilities for the production of chitosan models, implants and scaffolds for cell cultures that are much more precise than existing ones. The article presents current achievements related to the possibility of using chitosan to create new materials for 3D printing in the form of chitosan bioinks, filaments, resins and powders dedicated for bioprinting, fused deposition modelling, stereolithography/digital light processing and selective laser sintering methods, respectively","PeriodicalId":44461,"journal":{"name":"Progress on Chemistry and Application of Chitin and its Derivatives","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress on Chemistry and Application of Chitin and its Derivatives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15259/pcacd.25.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
Three-dimensional (3D) biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative solutions in the biomedical sector, including drug delivery systems, disease modelling and tissue and organ engineering. Due to its remarkable and promising biological and structural properties, chitosan has been widely studied for decades in several potential applications in the biomedical field. However, tools in the form of 3D printers have created new possibilities for the production of chitosan models, implants and scaffolds for cell cultures that are much more precise than existing ones. The article presents current achievements related to the possibility of using chitosan to create new materials for 3D printing in the form of chitosan bioinks, filaments, resins and powders dedicated for bioprinting, fused deposition modelling, stereolithography/digital light processing and selective laser sintering methods, respectively
期刊介绍:
Progress in the Chemistry and Application of Chitin and its Derivatives is an annual journal focused on all aspects of production, modification, enzymology and application of chitin and its many derivatives, including chitosan. The journal publishes full-length papers as well as invited reviews. To be considered, papers must present original research that has not been published or accepted for publication elsewhere. The language of the journal will be English.