Tip-based nanofabrication below 40 nm combined with a nanopositioning machine with a movement range of Ø100 mm

IF 2.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Micro and Nano Engineering Pub Date : 2023-06-01 DOI:10.1016/j.mne.2023.100201
Jaqueline Stauffenberg , Michael Reibe , Anja Krötschl , Christoph Reuter , Ingo Ortlepp , Denis Dontsov , Steffen Hesse , Ivo W. Rangelow , Steffen Strehle , Eberhard Manske
{"title":"Tip-based nanofabrication below 40 nm combined with a nanopositioning machine with a movement range of Ø100 mm","authors":"Jaqueline Stauffenberg ,&nbsp;Michael Reibe ,&nbsp;Anja Krötschl ,&nbsp;Christoph Reuter ,&nbsp;Ingo Ortlepp ,&nbsp;Denis Dontsov ,&nbsp;Steffen Hesse ,&nbsp;Ivo W. Rangelow ,&nbsp;Steffen Strehle ,&nbsp;Eberhard Manske","doi":"10.1016/j.mne.2023.100201","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the combination of an advanced nanopositioning technique and a tip-based system, which can be used as an atomic force microscope (AFM) and especially for field emission scanning probe lithography (FESPL) is presented. This is possible through the use of active microcantilevers that allow easy switching between measurement and write modes. The combination of nanopositioning and nanomeasuring machines and tip-based systems overcomes the usual limitations of AFM technology and makes it possible to perform high-precision surface scanning and nanofabrication on wafer sizes up to 4 in. We specifically discuss the potential of nanofabrication via FESPL in combination with the nanofabrication machine (NFM-100). Results are presented, where nanofabrication is demonstrated in form of a spiral path over a total length of 1 mm and the potential of this technique in terms of accuracy is discussed. Furthermore, ten lines were written with a pitch of 100 nm and a linewidth below 40 nm was achieved, which is in principle possible over the entire range of motion.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"19 ","pages":"Article 100201"},"PeriodicalIF":2.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259000722300031X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the combination of an advanced nanopositioning technique and a tip-based system, which can be used as an atomic force microscope (AFM) and especially for field emission scanning probe lithography (FESPL) is presented. This is possible through the use of active microcantilevers that allow easy switching between measurement and write modes. The combination of nanopositioning and nanomeasuring machines and tip-based systems overcomes the usual limitations of AFM technology and makes it possible to perform high-precision surface scanning and nanofabrication on wafer sizes up to 4 in. We specifically discuss the potential of nanofabrication via FESPL in combination with the nanofabrication machine (NFM-100). Results are presented, where nanofabrication is demonstrated in form of a spiral path over a total length of 1 mm and the potential of this technique in terms of accuracy is discussed. Furthermore, ten lines were written with a pitch of 100 nm and a linewidth below 40 nm was achieved, which is in principle possible over the entire range of motion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
40 nm以下的尖端纳米制造与移动范围为B.2 100 mm的纳米定位机相结合
本文介绍了一种先进的纳米定位技术和基于尖端的系统的结合,该系统可以用作原子力显微镜(AFM),尤其是场发射扫描探针光刻(FESPL)。这可以通过使用有源微悬臂梁来实现,该微悬臂梁允许在测量和写入模式之间轻松切换。纳米定位和纳米测量机器以及基于尖端的系统的结合克服了AFM技术的常见局限性,使在尺寸高达4英寸的晶片上进行高精度表面扫描和纳米制造成为可能。我们特别讨论了通过FESPL与纳米制造机器(NFM-100)相结合进行纳米制造的潜力。给出了结果,其中纳米制造以总长度为1mm的螺旋路径的形式进行了演示,并讨论了该技术在精度方面的潜力。此外,以100nm的间距写入10条线,并且实现了低于40nm的线宽,这在整个运动范围内原则上是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Micro and Nano Engineering
Micro and Nano Engineering Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
67
审稿时长
80 days
期刊最新文献
Laser-engraved holograms as entropy source for random number generators Developments in the design and microfabrication of photovoltaic retinal implants Enhanced plasma etching using nonlinear parameter evolution Low-frequency electromagnetic harvester for wind turbine vibrations From ghost to state-of-the-art process corrections – PEC enabled e-beam nanofabrication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1