{"title":"基于Mask R-CNN的ORB去误匹配方法","authors":"张博, Zhang Bo, 韩广良, Han Guang-liang","doi":"10.3788/YJYXS20183308.0690","DOIUrl":null,"url":null,"abstract":"为了提高多目标图像的ORB匹配的正确率,提出一种基于Mask R-CNN的图像ORB去除误匹配方法,该算法首先通过Faster R-CNN方法对图像进行识别,运用区域推荐网络得到矩形框标注的感兴趣区域和类别标签,该步骤可以得到感兴趣区域的预测类别和坐标信息,并且通过全卷积网络卷积层进行像素级别校正,得到像素级别的目标所属类别,然后进行目标分割。最后在原有ORB特征点匹配基础上,剔除两幅图像中相同目标分割区域以外的误匹配点。为了验证该方法的有效性,对传统ORB匹配与基于本文方法的ORB匹配进行了仿真实验。改进后的算法,使得在多目标环境下的目标的匹配精度提高了约18.6%,结果表明,本文算法较传统的ORB匹配算法的精度有一定提高。","PeriodicalId":10128,"journal":{"name":"液晶与显示","volume":"33 1","pages":"690-696"},"PeriodicalIF":0.7000,"publicationDate":"2018-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"液晶与显示","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3788/YJYXS20183308.0690","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
基于Mask R-CNN的ORB去误匹配方法
为了提高多目标图像的ORB匹配的正确率,提出一种基于Mask R-CNN的图像ORB去除误匹配方法,该算法首先通过Faster R-CNN方法对图像进行识别,运用区域推荐网络得到矩形框标注的感兴趣区域和类别标签,该步骤可以得到感兴趣区域的预测类别和坐标信息,并且通过全卷积网络卷积层进行像素级别校正,得到像素级别的目标所属类别,然后进行目标分割。最后在原有ORB特征点匹配基础上,剔除两幅图像中相同目标分割区域以外的误匹配点。为了验证该方法的有效性,对传统ORB匹配与基于本文方法的ORB匹配进行了仿真实验。改进后的算法,使得在多目标环境下的目标的匹配精度提高了约18.6%,结果表明,本文算法较传统的ORB匹配算法的精度有一定提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。