Heitor Cantarella, Jean Felipe Leal Silva, Luiz Augusto Horta Nogueira, Rubens Maciel Filho, Raffaella Rossetto, Tomas Ekbom, Glaucia Mendes Souza, Franziska Mueller-Langer
{"title":"Biofuel technologies: Lessons learned and pathways to decarbonization","authors":"Heitor Cantarella, Jean Felipe Leal Silva, Luiz Augusto Horta Nogueira, Rubens Maciel Filho, Raffaella Rossetto, Tomas Ekbom, Glaucia Mendes Souza, Franziska Mueller-Langer","doi":"10.1111/gcbb.13091","DOIUrl":null,"url":null,"abstract":"<p>This Opinion highlights several successful cases of biofuel technologies recently described by the IEA Bioenergy Intertask Report on Lessons Learned. The report discussed the potential of biofuels to contribute to a significant market supply, thus replacing fossil fuels and mitigating global warming, and it underscores the challenges in expanding biofuel production and replicating successful models between countries and regions. Based on the lessons learned from conventional, established technologies, the authors analyzed policies, feedstocks, products, technologies, economics, environmental concerns, social aspects, scalability, and ease of implementation and replication in different countries or regions. There are blending mandates in place around the world to foster the use of biofuels. Dependence on the availability and price fluctuations of crop feedstocks may limit biofuel production in certain circumstances. Legal restrictions on using food crops as feedstocks present obstacles to scaling up production. Temporary constraints related to feedstock costs and availability, as evidenced by changes and postponements of biofuel blending mandates in various countries (particularly during the COVID-19 pandemic) also pose challenges. Technological hurdles exist for advanced biofuels that implicate premium pricing. Still, 2G ethanol from sugarcane meets very strict feedstock requirements with a carbon footprint so low that only electric vehicles charged in Norway could have life-cycle GHG emissions at the same level as a 2G ethanol-fueled combustion engine car. The authors evaluate whether and how much electrification could contribute to advance the decarbonization efforts in different countries. Drawing from these observations, the authors express their viewpoints to assist researchers and policymakers in the energy sector in formulating viable approaches to combat the climate crisis.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"15 10","pages":"1190-1203"},"PeriodicalIF":5.9000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13091","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13091","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 2
Abstract
This Opinion highlights several successful cases of biofuel technologies recently described by the IEA Bioenergy Intertask Report on Lessons Learned. The report discussed the potential of biofuels to contribute to a significant market supply, thus replacing fossil fuels and mitigating global warming, and it underscores the challenges in expanding biofuel production and replicating successful models between countries and regions. Based on the lessons learned from conventional, established technologies, the authors analyzed policies, feedstocks, products, technologies, economics, environmental concerns, social aspects, scalability, and ease of implementation and replication in different countries or regions. There are blending mandates in place around the world to foster the use of biofuels. Dependence on the availability and price fluctuations of crop feedstocks may limit biofuel production in certain circumstances. Legal restrictions on using food crops as feedstocks present obstacles to scaling up production. Temporary constraints related to feedstock costs and availability, as evidenced by changes and postponements of biofuel blending mandates in various countries (particularly during the COVID-19 pandemic) also pose challenges. Technological hurdles exist for advanced biofuels that implicate premium pricing. Still, 2G ethanol from sugarcane meets very strict feedstock requirements with a carbon footprint so low that only electric vehicles charged in Norway could have life-cycle GHG emissions at the same level as a 2G ethanol-fueled combustion engine car. The authors evaluate whether and how much electrification could contribute to advance the decarbonization efforts in different countries. Drawing from these observations, the authors express their viewpoints to assist researchers and policymakers in the energy sector in formulating viable approaches to combat the climate crisis.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.