The L-Curve Criterion as a Model Selection Tool in PLS Regression

IF 1.3 Q3 STATISTICS & PROBABILITY Journal of Probability and Statistics Pub Date : 2019-10-30 DOI:10.1155/2019/3129769
Abdelmounaim Kerkri, J. Allal, Zoubir Zarrouk
{"title":"The L-Curve Criterion as a Model Selection Tool in PLS Regression","authors":"Abdelmounaim Kerkri, J. Allal, Zoubir Zarrouk","doi":"10.1155/2019/3129769","DOIUrl":null,"url":null,"abstract":"Partial least squares (PLS) regression is an alternative to the ordinary least squares (OLS) regression, used in the presence of multicollinearity. As with any other modelling method, PLS regression requires a reliable model selection tool. Cross validation (CV) is the most commonly used tool with many advantages in both preciseness and accuracy, but it also has some drawbacks; therefore, we will use L-curve criterion as an alternative, given that it takes into consideration the shrinking nature of PLS. A theoretical justification for the use of L-curve criterion is presented as well as an application on both simulated and real data. The application shows how this criterion generally outperforms cross validation and generalized cross validation (GCV) in mean squared prediction error and computational efficiency.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/3129769","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/3129769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

Partial least squares (PLS) regression is an alternative to the ordinary least squares (OLS) regression, used in the presence of multicollinearity. As with any other modelling method, PLS regression requires a reliable model selection tool. Cross validation (CV) is the most commonly used tool with many advantages in both preciseness and accuracy, but it also has some drawbacks; therefore, we will use L-curve criterion as an alternative, given that it takes into consideration the shrinking nature of PLS. A theoretical justification for the use of L-curve criterion is presented as well as an application on both simulated and real data. The application shows how this criterion generally outperforms cross validation and generalized cross validation (GCV) in mean squared prediction error and computational efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
L-曲线准则作为PLS回归中的模型选择工具
偏最小二乘(PLS)回归是普通最小二乘(OLS)回归的替代方法,用于多重共线性的存在。与任何其他建模方法一样,PLS回归需要一个可靠的模型选择工具。交叉验证(CV)是最常用的工具,在准确性和精确性上都有很多优点,但它也有一些缺点;因此,考虑到PLS的收缩特性,我们将使用l曲线准则作为替代方案。提出了使用l曲线准则的理论依据以及在模拟和实际数据上的应用。应用表明,该准则在均方预测误差和计算效率方面普遍优于交叉验证和广义交叉验证(GCV)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Probability and Statistics
Journal of Probability and Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
14
审稿时长
18 weeks
期刊最新文献
Flexible Lévy-Based Models for Time Series of Count Data with Zero-Inflation, Overdispersion, and Heavy Tails Exponentially Generated Modified Chen Distribution with Applications to Lifetime Dataset Bayesian Estimation of the Stress-Strength Reliability Based on Generalized Order Statistics for Pareto Distribution Monitoring Changes in Clustering Solutions: A Review of Models and Applications Fitting Time Series Models to Fisheries Data to Ascertain Age
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1