What Is the Top Quark Mass?

IF 9.1 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR Annual Review of Nuclear and Particle Science Pub Date : 2020-04-27 DOI:10.1146/annurev-nucl-101918-023530
A. Hoang
{"title":"What Is the Top Quark Mass?","authors":"A. Hoang","doi":"10.1146/annurev-nucl-101918-023530","DOIUrl":null,"url":null,"abstract":"This review provides an overview of the conceptual issues regarding the interpretation of so-called direct top quark mass measurements, which are based on the kinematic reconstruction of top quark decay products at the Large Hadron Collider (LHC). These measurements quote the top mass parameter [Formula: see text] of Monte Carlo event generators with current uncertainties of around 0.5 GeV. The problem of finding a rigorous relation between [Formula: see text] and top mass renormalization schemes defined in field theory is unresolved to date and touches perturbative as well as nonperturbative aspects and the limitations of state-of-the-art Monte Carlo event generators. I review the status of LHC top mass measurements, illustrate how conceptual limitations enter the picture, and explain a controversy that has permeated the community in the context of the interpretation problem related to [Formula: see text]. I then summarize recent advances in acquiring first principles insights and outline what else has to be understood to fully resolve the issue. I conclude with recommendations on how to deal with the interpretation problem for the time being when making top mass–dependent theoretical predictions.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-101918-023530","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 27

Abstract

This review provides an overview of the conceptual issues regarding the interpretation of so-called direct top quark mass measurements, which are based on the kinematic reconstruction of top quark decay products at the Large Hadron Collider (LHC). These measurements quote the top mass parameter [Formula: see text] of Monte Carlo event generators with current uncertainties of around 0.5 GeV. The problem of finding a rigorous relation between [Formula: see text] and top mass renormalization schemes defined in field theory is unresolved to date and touches perturbative as well as nonperturbative aspects and the limitations of state-of-the-art Monte Carlo event generators. I review the status of LHC top mass measurements, illustrate how conceptual limitations enter the picture, and explain a controversy that has permeated the community in the context of the interpretation problem related to [Formula: see text]. I then summarize recent advances in acquiring first principles insights and outline what else has to be understood to fully resolve the issue. I conclude with recommendations on how to deal with the interpretation problem for the time being when making top mass–dependent theoretical predictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
什么是最高夸克质量?
这篇综述概述了与解释所谓的直接顶夸克质量测量有关的概念问题,该测量基于大型强子对撞机(LHC)顶夸克衰变产物的运动学重建。这些测量引用了当前不确定性约为0.5GeV的蒙特卡罗事件发生器的顶部质量参数[公式:见正文]。迄今为止,在[公式:见正文]和场论中定义的顶质量重整化方案之间找到严格关系的问题尚未解决,并且涉及微扰和非扰动方面以及最先进的蒙特卡罗事件发生器的局限性。我回顾了大型强子对撞机顶部质量测量的现状,说明了概念限制是如何进入画面的,并解释了在与[公式:见正文]相关的解释问题的背景下渗透到社区中的争议。然后,我总结了在获得第一原则见解方面的最新进展,并概述了要完全解决这个问题还需要了解的其他内容。最后,我提出了一些建议,说明在进行与最高质量相关的理论预测时,如何暂时处理解释问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
21.50
自引率
0.80%
发文量
18
期刊介绍: The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation. One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.
期刊最新文献
High-Luminosity B Factory e+e− Colliders Multiwavelength and Multimessenger Counterparts of Fast Radio Bursts High-Field Magnets for Future Hadron Colliders Machine Learning for Design and Control of Particle Accelerators: A Look Backward and Forward Concepts for Neutrino Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1