The transformative potential of machine learning for experiments in fluid mechanics

IF 44.8 1区 物理与天体物理 Q1 PHYSICS, APPLIED Nature Reviews Physics Pub Date : 2023-08-10 DOI:10.1038/s42254-023-00622-y
Ricardo Vinuesa, Steven L. Brunton, Beverley J. McKeon
{"title":"The transformative potential of machine learning for experiments in fluid mechanics","authors":"Ricardo Vinuesa, Steven L. Brunton, Beverley J. McKeon","doi":"10.1038/s42254-023-00622-y","DOIUrl":null,"url":null,"abstract":"The field of machine learning (ML) has rapidly advanced the state of the art in many fields of science and engineering, including experimental fluid dynamics, which is one of the original big-data disciplines. This Perspective article highlights several aspects of experimental fluid mechanics that stand to benefit from progress in ML, including augmenting the fidelity and quality of measurement techniques, improving experimental design and surrogate digital-twin models and enabling real-time estimation and control. In each case, we discuss recent success stories and ongoing challenges, along with caveats and limitations, and outline the potential for new avenues of ML-augmented and ML-enabled experimental fluid mechanics. Recent advances in machine learning are enabling progress in several aspects of experimental fluid mechanics. This Perspective article focuses on augmenting the quality of measurement techniques, improving experimental design and enabling real-time estimation and control.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"5 9","pages":"536-545"},"PeriodicalIF":44.8000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-023-00622-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 6

Abstract

The field of machine learning (ML) has rapidly advanced the state of the art in many fields of science and engineering, including experimental fluid dynamics, which is one of the original big-data disciplines. This Perspective article highlights several aspects of experimental fluid mechanics that stand to benefit from progress in ML, including augmenting the fidelity and quality of measurement techniques, improving experimental design and surrogate digital-twin models and enabling real-time estimation and control. In each case, we discuss recent success stories and ongoing challenges, along with caveats and limitations, and outline the potential for new avenues of ML-augmented and ML-enabled experimental fluid mechanics. Recent advances in machine learning are enabling progress in several aspects of experimental fluid mechanics. This Perspective article focuses on augmenting the quality of measurement techniques, improving experimental design and enabling real-time estimation and control.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习在流体力学实验中的变革潜力
机器学习(ML)领域迅速提升了许多科学和工程领域的技术水平,包括作为原始大数据学科之一的实验流体力学。这篇 "视角 "文章重点介绍了实验流体力学中能够从机器学习进步中受益的几个方面,包括提高测量技术的保真度和质量、改进实验设计和代用数字孪生模型,以及实现实时估算和控制。在每种情况下,我们都会讨论最近的成功案例和正在面临的挑战,以及注意事项和局限性,并概述 ML 增强和 ML 支持的实验流体力学新途径的潜力。机器学习的最新进展推动了实验流体力学多个方面的进步。这篇 "视角 "文章的重点是提高测量技术的质量、改进实验设计以及实现实时估算和控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
47.80
自引率
0.50%
发文量
122
期刊介绍: Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.
期刊最新文献
Science should inspire, but visions need nuance The AI revolution is always just out of reach The promise and peril of sociotechnical visions of the future Publisher Correction: Rydberg states of alkali atoms in atomic vapour as SI-traceable field probes and communications receivers Physics and the empirical gap of trustworthy AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1