Synthesis and Characterization of Ultrafine Ag/ZnO Nanotetrapods (AZNTP) for Environment Humidity Sensing

B. Sadeghi
{"title":"Synthesis and Characterization of Ultrafine Ag/ZnO Nanotetrapods (AZNTP) for Environment Humidity Sensing","authors":"B. Sadeghi","doi":"10.15171/ajehe.2018.15","DOIUrl":null,"url":null,"abstract":"Ag/ZnO nanotetrapods (AZNTP) are prepared using silver (I)–bis (oxalato) zinc complex and 1, 3-diaminopropane (DAP) under a phase separation system. This crystal structure and lattice constant of the AZNTP was investigated by means of XRD, TEM, and UV-vis spectrum. AZNTP films with 23 nm in arm diameter and high surface activity work at room temperature as humidity sensors. AZNTP have shown some properties including quick response with high sensitivity, a longer life span and recovery, and no need for heat regeneration. Moreover, AZNTP could form OH group with physisorbed water in wet environments. The results of the present study demonstrated that the growth and characterization of AZNTP for environmental humidity sensing and DAP play an original role in the determination of particle morphology. Ultra-thin AZNTP has also been tested as a resistance sensor, having an unusual high sensitivity to moisture.","PeriodicalId":8672,"journal":{"name":"Avicenna Journal of Environmental Health Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avicenna Journal of Environmental Health Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15171/ajehe.2018.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

Abstract

Ag/ZnO nanotetrapods (AZNTP) are prepared using silver (I)–bis (oxalato) zinc complex and 1, 3-diaminopropane (DAP) under a phase separation system. This crystal structure and lattice constant of the AZNTP was investigated by means of XRD, TEM, and UV-vis spectrum. AZNTP films with 23 nm in arm diameter and high surface activity work at room temperature as humidity sensors. AZNTP have shown some properties including quick response with high sensitivity, a longer life span and recovery, and no need for heat regeneration. Moreover, AZNTP could form OH group with physisorbed water in wet environments. The results of the present study demonstrated that the growth and characterization of AZNTP for environmental humidity sensing and DAP play an original role in the determination of particle morphology. Ultra-thin AZNTP has also been tested as a resistance sensor, having an unusual high sensitivity to moisture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境湿度传感用超细Ag/ZnO纳米四足体(AZNTP)的合成与表征
以银(I)-双(草酸)锌配合物和1,3-二氨基丙烷(DAP)为原料,在相分离体系中制备了Ag/ZnO纳米粒子(AZNTP)。通过XRD、TEM和UV-vis光谱研究了AZNTP的晶体结构和晶格常数。臂直径为23nm且具有高表面活性的AZNTP膜在室温下作为湿度传感器工作。AZNTP已显示出一些特性,包括具有高灵敏度的快速响应、更长的寿命和回收率,以及不需要热再生。此外,在潮湿环境中,AZNTP可以与物理吸附的水形成OH基团。本研究的结果表明,用于环境湿度传感的AZNTP和DAP的生长和表征在颗粒形态的测定中发挥着原始作用。超薄AZNTP也被测试为电阻传感器,对水分具有不同寻常的高灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Avicenna Journal of Environmental Health Engineering
Avicenna Journal of Environmental Health Engineering Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
1.00
自引率
0.00%
发文量
8
审稿时长
8 weeks
期刊最新文献
Predictive Modeling for Forecasting Air Quality Index (AQI) Using Time Series Analysis The Removal of Methylene Blue from Aqueous Solutions Using Zinc Oxide Nanoparticles With Hydrogen Peroxide Optimization and Isothermal Studies of Antibiotics Mixture Biosorption From Wastewater Using Palm Kernel, Chrysophyllum albidum, and Coconut Shells Biocomposite The Burden of Diseases From Exposure to Environmental Cigarette Smoke: A Case Study of Municipal Staff in Qazvin, Iran Spatial Distribution of Lead in the Soil of Urban Areas Under Different Land-Use Types
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1