K. Buch, K. Naik, Swapnil Nalawade, Shruti Bhatporia, Y. Gupta, B. Ajithkumar
{"title":"Real-Time Implementation of MAD-Based RFI Excision on FPGA","authors":"K. Buch, K. Naik, Swapnil Nalawade, Shruti Bhatporia, Y. Gupta, B. Ajithkumar","doi":"10.1142/S2251171719400063","DOIUrl":null,"url":null,"abstract":"Radio Frequency Interference (RFI) excision in wideband radio telescope receivers is gaining significance due to increasing levels of manmade RFI and operation outside the protected radio astronomy bands. The effect of RFI on astronomical data can be significantly reduced through real-time excision. In this paper, Median Absolute Deviation (MAD) is used for excising signals corrupted by strong impulsive interference. MAD estimation requires recursive median calculation which is a computationally challenging problem for real-time excision. This challenge is addressed by implementation of a histogram-based technique for MAD computation. The architecture is developed and optimized for Field Programmable Gate Array (FPGA) implementation. The design of a more robust variant of MAD called Median-of-MAD (MoM) is described. The architecture of MAD and MoM techniques and subsequent optimization allows for four RFI excision blocks on a single Xilinx Virtex-5 FPGA. These techniques have been tested on the GMRT wideband backend (GWB) processing a maximum of 400[Formula: see text]MHz bandwidth and the results show significant improvement in the signal-to-noise ratio (SNR).","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171719400063","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2251171719400063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
Radio Frequency Interference (RFI) excision in wideband radio telescope receivers is gaining significance due to increasing levels of manmade RFI and operation outside the protected radio astronomy bands. The effect of RFI on astronomical data can be significantly reduced through real-time excision. In this paper, Median Absolute Deviation (MAD) is used for excising signals corrupted by strong impulsive interference. MAD estimation requires recursive median calculation which is a computationally challenging problem for real-time excision. This challenge is addressed by implementation of a histogram-based technique for MAD computation. The architecture is developed and optimized for Field Programmable Gate Array (FPGA) implementation. The design of a more robust variant of MAD called Median-of-MAD (MoM) is described. The architecture of MAD and MoM techniques and subsequent optimization allows for four RFI excision blocks on a single Xilinx Virtex-5 FPGA. These techniques have been tested on the GMRT wideband backend (GWB) processing a maximum of 400[Formula: see text]MHz bandwidth and the results show significant improvement in the signal-to-noise ratio (SNR).
期刊介绍:
The Journal of Astronomical Instrumentation (JAI) publishes papers describing instruments and components being proposed, developed, under construction and in use. JAI also publishes papers that describe facility operations, lessons learned in design, construction, and operation, algorithms and their implementations, and techniques, including calibration, that are fundamental elements of instrumentation. The journal focuses on astronomical instrumentation topics in all wavebands (Radio to Gamma-Ray) and includes the disciplines of Heliophysics, Space Weather, Lunar and Planetary Science, Exoplanet Exploration, and Astroparticle Observation (cosmic rays, cosmic neutrinos, etc.). Concepts, designs, components, algorithms, integrated systems, operations, data archiving techniques and lessons learned applicable but not limited to the following platforms are pertinent to this journal. Example topics are listed below each platform, and it is recognized that many of these topics are relevant to multiple platforms. Relevant platforms include: Ground-based observatories[...] Stratospheric aircraft[...] Balloons and suborbital rockets[...] Space-based observatories and systems[...] Landers and rovers, and other planetary-based instrument concepts[...]